BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1648228)

  • 21. Transformation-defective v-ski induces MyoD and myogenin expression but not myotube formation.
    Colmenares C; Teumer JK; Stavnezer E
    Mol Cell Biol; 1991 Feb; 11(2):1167-70. PubMed ID: 1846665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional repression by the orphan steroid receptor RVR/Rev-erb beta is dependent on the signature motif and helix 5 in the E region: functional evidence for a biological role of RVR in myogenesis.
    Burke L; Downes M; Carozzi A; Giguère V; Muscat GE
    Nucleic Acids Res; 1996 Sep; 24(18):3481-9. PubMed ID: 8836172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. E2F1 inhibition of transcription activation by myogenic basic helix-loop-helix regulators.
    Wang J; Huang Q; Tang W; Nadal-Ginard B
    J Cell Biochem; 1996 Sep; 62(3):405-10. PubMed ID: 8872611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation.
    Davis RL; Cheng PF; Lassar AB; Weintraub H
    Cell; 1990 Mar; 60(5):733-46. PubMed ID: 2155707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping of myogenin transcription during embryogenesis using transgenes linked to the myogenin control region.
    Cheng TC; Hanley TA; Mudd J; Merlie JP; Olson EN
    J Cell Biol; 1992 Dec; 119(6):1649-56. PubMed ID: 1334962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repression of muscle-specific gene activation by the murine Twist protein.
    Hebrok M; Füchtbauer A; Füchtbauer EM
    Exp Cell Res; 1997 May; 232(2):295-303. PubMed ID: 9168805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myogenic basic helix-loop-helix proteins regulate the expression of peroxisomal proliferator activated receptor-gamma coactivator-1alpha.
    Chang JH; Lin KH; Shih CH; Chang YJ; Chi HC; Chen SL
    Endocrinology; 2006 Jun; 147(6):3093-106. PubMed ID: 16527841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of the myogenic determination factor myogenin with E12 and a DNA target: mechanism and kinetics.
    Spinner DS; Liu S; Wang SW; Schmidt J
    J Mol Biol; 2002 Mar; 317(3):431-45. PubMed ID: 11922675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation.
    Benezra R; Davis RL; Lassar A; Tapscott S; Thayer M; Lockshon D; Weintraub H
    Ann N Y Acad Sci; 1990; 599():1-11. PubMed ID: 2171390
    [No Abstract]   [Full Text] [Related]  

  • 30. Dimerization through the helix-loop-helix motif enhances phosphorylation of the transcription activation domains of myogenin.
    Zhou J; Olson EN
    Mol Cell Biol; 1994 Sep; 14(9):6232-43. PubMed ID: 8065355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains.
    Li L; Zhou J; James G; Heller-Harrison R; Czech MP; Olson EN
    Cell; 1992 Dec; 71(7):1181-94. PubMed ID: 1335366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transforming growth factor beta represses the actions of myogenin through a mechanism independent of DNA binding.
    Brennan TJ; Edmondson DG; Li L; Olson EN
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3822-6. PubMed ID: 1850837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The regulation of myogenin gene expression during the embryonic development of the mouse.
    Yee SP; Rigby PW
    Genes Dev; 1993 Jul; 7(7A):1277-89. PubMed ID: 8391506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization.
    Brennan TJ; Olson EN
    Genes Dev; 1990 Apr; 4(4):582-95. PubMed ID: 2163343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1.
    Grasberger H; Ye H; Mashima H; Bell GI
    Gene; 2005 Jan; 344():143-59. PubMed ID: 15656981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a thyroid hormone response element in the mouse myogenin gene: characterization of the thyroid hormone and retinoid X receptor heterodimeric binding site.
    Downes M; Griggs R; Atkins A; Olson EN; Muscat GE
    Cell Growth Differ; 1993 Nov; 4(11):901-9. PubMed ID: 8297796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional activation of the myogenin gene by MEF2-mediated recruitment of myf5 is inhibited by adenovirus E1A protein.
    Johanson M; Meents H; Ragge K; Buchberger A; Arnold HH; Sandmöller A
    Biochem Biophys Res Commun; 1999 Nov; 265(1):222-32. PubMed ID: 10548518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The molecular basis of skeletal muscle differentiation.
    Dias P; Dilling M; Houghton P
    Semin Diagn Pathol; 1994 Feb; 11(1):3-14. PubMed ID: 8202645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constitutive expression of the orphan receptor, Rev-erbA alpha, inhibits muscle differentiation and abrogates the expression of the myoD gene family.
    Downes M; Carozzi AJ; Muscat GE
    Mol Endocrinol; 1995 Dec; 9(12):1666-78. PubMed ID: 8614403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation.
    Postigo AA; Dean DC
    EMBO J; 1997 Jul; 16(13):3935-43. PubMed ID: 9233803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.