These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 16482346)
1. The enzymatic activation of coenzyme B12. Brown KL Dalton Trans; 2006 Mar; (9):1123-33. PubMed ID: 16482346 [TBL] [Abstract][Full Text] [Related]
2. Molecular modeling of the mechanochemical triggering mechanism for catalysis of carbon-cobalt bond homolysis in coenzyme B12. Brown KL; Marques HM J Inorg Biochem; 2001 Jan; 83(2-3):121-32. PubMed ID: 11237251 [TBL] [Abstract][Full Text] [Related]
3. Solution structure and thermolysis of Cobeta-5'-deoxyadenosylimidazolylcobamide, a coenzyme B12 analogue with an imidazole axial nucleoside. Brown KL; Zou X; Banka RR; Perry CB; Marques HM Inorg Chem; 2004 Dec; 43(25):8130-42. PubMed ID: 15578853 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic activity of coenzyme B(12) derivatives with altered axial nucleotides: probing the mechanochemical triggering hypothesis in ribonucleotide reductase. Brown KL; Zou X; Li J; Chen G Inorg Chem; 2001 Nov; 40(23):5942-7. PubMed ID: 11681909 [TBL] [Abstract][Full Text] [Related]
5. Structural and enzymatic studies of a new analogue of coenzyme B12 with an alpha-adenosyl upper axial ligand. Brown KL; Cheng S; Zou X; Li J; Chen G; Valente EJ; Zubkowski JD; Marques HM Biochemistry; 1998 Jul; 37(27):9704-15. PubMed ID: 9657683 [TBL] [Abstract][Full Text] [Related]
6. Solution structure, enzymatic, and non-enzymatic reactivity of 3-isoadenosylcobalamin, a structural isomer of coenzyme B12 with surprising coenzymic activity. Brown KL; Zou X; Chen G; Xia Z; Marques HM J Inorg Biochem; 2004 Feb; 98(2):287-300. PubMed ID: 14729309 [TBL] [Abstract][Full Text] [Related]
7. Thermolysis of coenzymes B12 at physiological temperatures: activation parameters for cobalt-carbon bond homolysis and a quantitative analysis of the perturbation of the homolysis equilibrium by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Brown KL; Zou X J Inorg Biochem; 1999; 77(3-4):185-95. PubMed ID: 10643658 [TBL] [Abstract][Full Text] [Related]
8. NMR observations of 13C-enriched coenzyme B12 bound to the ribonucleotide reductase from Lactobacillus leichmannii. Brown KL; Li J; Zou X Inorg Chem; 2006 Nov; 45(23):9172-4. PubMed ID: 17083212 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic and kinetic studies on carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: the importance of entropy in catalysis. Licht SS; Lawrence CC; Stubbe J Biochemistry; 1999 Jan; 38(4):1234-42. PubMed ID: 9930983 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic and computational studies of cobalamin species with variable lower axial ligation: implications for the mechanism of Co-C bond activation by class I cobalamin-dependent isomerases. Conrad KS; Jordan CD; Brown KL; Brunold TC Inorg Chem; 2015 Apr; 54(8):3736-47. PubMed ID: 25839944 [TBL] [Abstract][Full Text] [Related]
11. Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation. Licht SS; Booker S; Stubbe J Biochemistry; 1999 Jan; 38(4):1221-33. PubMed ID: 9930982 [TBL] [Abstract][Full Text] [Related]
12. The function of adenosylcobalamin in the mechanism of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Lawrence CC; Stubbe J Curr Opin Chem Biol; 1998 Oct; 2(5):650-5. PubMed ID: 9818192 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the existence of hyper-long axial Co(II)-N bonds in cobinamide B(12) models by using electron paramagnetic resonance spectroscopy. Trommel JS; Warncke K; Marzilli LG J Am Chem Soc; 2001 Apr; 123(14):3358-66. PubMed ID: 11457072 [TBL] [Abstract][Full Text] [Related]
14. DFT studies of trans and cis influences in the homolysis of the Co-C bond in models of the alkylcobalamins. Govender PP; Navizet I; Perry CB; Marques HM J Phys Chem A; 2013 Apr; 117(14):3057-68. PubMed ID: 23510290 [TBL] [Abstract][Full Text] [Related]
15. Binding of Cob(II)alamin to the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii. Identification of dimethylbenzimidazole as the axial ligand. Lawrence CC; Gerfen GJ; Samano V; Nitsche R; Robins MJ; Rétey J; Stubbe J J Biol Chem; 1999 Mar; 274(11):7039-42. PubMed ID: 10066759 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic and computational studies on the adenosylcobalamin-dependent methylmalonyl-CoA mutase: evaluation of enzymatic contributions to Co-C bond activation in the Co3+ ground state. Brooks AJ; Vlasie M; Banerjee R; Brunold TC J Am Chem Soc; 2004 Jul; 126(26):8167-80. PubMed ID: 15225058 [TBL] [Abstract][Full Text] [Related]
17. Structural Basis for the Activation of the Cobalt-Carbon Bond and Control of the Adenosyl Radical in Coenzyme B Shibata N; Toraya T Chembiochem; 2023 Jul; 24(14):e202300021. PubMed ID: 36916316 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen abstraction from thiols by adenosyl radicals: chemical precedent for thiyl radical formation, the first catalytic step in ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Sirovatka JM; Finke RG J Inorg Biochem; 2000 Jan; 78(2):149-60. PubMed ID: 10766338 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic and computational studies of Co3+-corrinoids: spectral and electronic properties of the B12 cofactors and biologically relevant precursors. Stich TA; Brooks AJ; Buan NR; Brunold TC J Am Chem Soc; 2003 May; 125(19):5897-914. PubMed ID: 12733931 [TBL] [Abstract][Full Text] [Related]
20. A combined density functional theory and molecular mechanics study of the relationship between the structure of coenzyme B12 and its binding to methylmalonyl-CoA mutase. Freindorf M; Kozlowski PM J Am Chem Soc; 2004 Feb; 126(7):1928-9. PubMed ID: 14971913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]