These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16482546)

  • 1. Formation of hydroxyapatite-polyphosphazene polymer composites at physiologic temperature.
    Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 May; 77(2):416-25. PubMed ID: 16482546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications.
    Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT
    Biomaterials; 2005 Jan; 26(1):1-9. PubMed ID: 15193876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically formed HAp-Ca poly(vinyl phosphonate) composites.
    Greish YE; Brown PW
    Biomaterials; 2001 Apr; 22(8):807-16. PubMed ID: 11246949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of hydroxyapatite-gelatin composites at 38 degrees C.
    TenHuisen KS; Brown PW
    J Biomed Mater Res; 1994 Jan; 28(1):27-33. PubMed ID: 8126026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and properties of a synthetic bone composite: hydroxyapatite-collagen.
    TenHuisen KS; Martin RI; Klimkiewicz M; Brown PW
    J Biomed Mater Res; 1995 Jul; 29(7):803-10. PubMed ID: 7593018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene.
    Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT
    J Mater Sci Mater Med; 2005 Jul; 16(7):613-20. PubMed ID: 15965592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase evolution during the formation of stoichiometric hydroxyapatite at 37.4 degrees C.
    Greish YE; Brown PW
    J Biomed Mater Res B Appl Biomater; 2003 Oct; 67(1):632-7. PubMed ID: 14528461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Na2HPO4 and NaH2PO4 on hydroxyapatite formation.
    Fulmer MT; Brown PW
    J Biomed Mater Res; 1993 Aug; 27(8):1095-102. PubMed ID: 8408122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of calcium phosphate-poly(vinyl phosphonic acid) composites.
    Greish YE; Brown PW
    J Mater Sci Mater Med; 2001 May; 12(5):407-11. PubMed ID: 15348279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetracalcium phosphate: Synthesis, properties and biomedical applications.
    Moseke C; Gbureck U
    Acta Biomater; 2010 Oct; 6(10):3815-23. PubMed ID: 20438869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy.
    Verma D; Katti K; Katti D
    J Biomed Mater Res A; 2006 Apr; 77(1):59-66. PubMed ID: 16355408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of biodegradable nanocomposite injectables for orthopaedic applications based on polyphosphazenes.
    Sethuraman S; Nair LS; El-Amin S; Nguyen MT; Singh A; Greish YE; Allcock HR; Brown PW; Laurencin CT
    J Biomater Sci Polym Ed; 2011; 22(4-6):733-52. PubMed ID: 20566055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4.2H2O and Ca4(PO4)2O.
    TenHuisen KS; Brown PW
    J Biomed Mater Res; 1997 Aug; 36(2):233-41. PubMed ID: 9261685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of hydroxyapatite/poly(ethylene glutarate) biomaterials.
    Siriphannon P; Monvisade P; Jinawath S; Hemachandra K
    J Biomed Mater Res A; 2007 May; 81(2):381-91. PubMed ID: 17542004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and properties of composites comprised of calcium-deficient hydroxyapatites and ethyl alanate polyphosphazenes.
    Greish YE; Sturgeon JL; Singh A; Krogman NR; Touny AH; Sethuraman S; Nair LS; Laurencin CT; Allcock HR; Brown PW
    J Mater Sci Mater Med; 2008 Sep; 19(9):3153-60. PubMed ID: 18437537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubility of strontium-substituted apatite by solid titration.
    Pan HB; Li ZY; Lam WM; Wong JC; Darvell BW; Luk KD; Lu WW
    Acta Biomater; 2009 Jun; 5(5):1678-85. PubMed ID: 19135423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ring-opening polymerization condition on the characteristic and mechanical properties of hydroxyapatite/poly(ethylene glutarate) biomaterials.
    Monvisade P; Siriphannon P; Tapcharoen W
    J Biomed Mater Res A; 2009 Sep; 90(3):656-63. PubMed ID: 18563814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of electrolytes on the rates of hydroxyapatite formation at 25 and 38 degrees C.
    Brown PW; Fulmer M
    J Biomed Mater Res; 1996 Jul; 31(3):395-400. PubMed ID: 8806066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of dense hydroxyapatite prepared using an SPS process.
    Nakahira A; Tamai M; Aritani H; Nakamura S; Yamashita K
    J Biomed Mater Res; 2002 Dec; 62(4):550-7. PubMed ID: 12221703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.