These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 16483604)
1. Importance of specific hydrogen bonds of archaeal rhodopsins for the binding to the transducer protein. Sudo Y; Yamabi M; Kato S; Hasegawa C; Iwamoto M; Shimono K; Kamo N J Mol Biol; 2006 Apr; 357(4):1274-82. PubMed ID: 16483604 [TBL] [Abstract][Full Text] [Related]
2. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. Radu I; Budyak IL; Hoomann T; Kim YJ; Engelhard M; Labahn J; Büldt G; Heberle J; Schlesinger R Biophys Chem; 2010 Aug; 150(1-3):23-8. PubMed ID: 20303644 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
4. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
5. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Zhang W; Brooun A; Mueller MM; Alam M Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852 [TBL] [Abstract][Full Text] [Related]
6. Role of charged residues of pharaonis phoborhodopsin (sensory rhodopsin II) in its interaction with the transducer protein. Sudo Y; Iwamoto M; Shimono K; Kamo N Biochemistry; 2004 Nov; 43(43):13748-54. PubMed ID: 15504037 [TBL] [Abstract][Full Text] [Related]
7. Protein-protein interaction of a Pharaonis halorhodopsin mutant forming a complex with Pharaonis halobacterial transducer protein II detected by Fourier-transform infrared spectroscopy. Furutani Y; Ito M; Sudo Y; Kamo N; Kandori H Photochem Photobiol; 2008; 84(4):874-9. PubMed ID: 18346088 [TBL] [Abstract][Full Text] [Related]
8. Signal transmission through the HtrII transducer alters the interaction of two alpha-helices in the HAMP domain. Inoue K; Sasaki J; Spudich JL; Terazima M J Mol Biol; 2008 Feb; 376(4):963-70. PubMed ID: 18199454 [TBL] [Abstract][Full Text] [Related]
9. FT-IR difference spectroscopy elucidates crucial interactions of sensory rhodopsin I with the cognate transducer HtrI. Mironova OS; Budyak IL; Büldt G; Schlesinger R; Heberle J Biochemistry; 2007 Aug; 46(33):9399-405. PubMed ID: 17655327 [TBL] [Abstract][Full Text] [Related]
11. Structural changes in the O-decay accelerated mutants of pharaonis phoborhodopsin. Sudo Y; Furutani Y; Iwamoto M; Kamo N; Kandori H Biochemistry; 2008 Mar; 47(9):2866-74. PubMed ID: 18247579 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen bonding alteration of Thr-204 in the complex between pharaonis phoborhodopsin and its transducer protein. Sudo Y; Furutani Y; Shimono K; Kamo N; Kandori H Biochemistry; 2003 Dec; 42(48):14166-72. PubMed ID: 14640684 [TBL] [Abstract][Full Text] [Related]
13. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
14. Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals. Sudo Y; Furutani Y; Spudich JL; Kandori H J Biol Chem; 2007 May; 282(21):15550-8. PubMed ID: 17387174 [TBL] [Abstract][Full Text] [Related]
15. Interaction of the halobacterial transducer to a halorhodopsin mutant engineered so as to bind the transducer: Cl- circulation within the extracellular channel. Hasegawa C; Kikukawa T; Miyauchi S; Seki A; Sudo Y; Kubo M; Demura M; Kamo N Photochem Photobiol; 2007; 83(2):293-302. PubMed ID: 16978043 [TBL] [Abstract][Full Text] [Related]
16. Steric constraint in the primary photoproduct of sensory rhodopsin II is a prerequisite for light-signal transfer to HtrII. Ito M; Sudo Y; Furutani Y; Okitsu T; Wada A; Homma M; Spudich JL; Kandori H Biochemistry; 2008 Jun; 47(23):6208-15. PubMed ID: 18479149 [TBL] [Abstract][Full Text] [Related]
17. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
18. Linker region of a halobacterial transducer protein interacts directly with its sensor retinal protein. Sudo Y; Okuda H; Yamabi M; Fukuzaki Y; Mishima M; Kamo N; Kojima C Biochemistry; 2005 Apr; 44(16):6144-52. PubMed ID: 15835902 [TBL] [Abstract][Full Text] [Related]
19. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M; Kandori H Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984 [TBL] [Abstract][Full Text] [Related]
20. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]