BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 16483835)

  • 1. Understanding regulatory networks and engineering for enhanced drought tolerance in plants.
    Valliyodan B; Nguyen HT
    Curr Opin Plant Biol; 2006 Apr; 9(2):189-95. PubMed ID: 16483835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.
    Vinocur B; Altman A
    Curr Opin Biotechnol; 2005 Apr; 16(2):123-32. PubMed ID: 15831376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factors as tools to engineer enhanced drought stress tolerance in plants.
    Hussain SS; Kayani MA; Amjad M
    Biotechnol Prog; 2011; 27(2):297-306. PubMed ID: 21302367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene networks involved in drought stress response and tolerance.
    Shinozaki K; Yamaguchi-Shinozaki K
    J Exp Bot; 2007; 58(2):221-7. PubMed ID: 17075077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Drought-responsive gene expression and stress tolerance in plants].
    Nakashima K; Abe H; Kasuga M; Yamaguchi-Shinozaki K; Shinozaki K
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2199-205. PubMed ID: 10586657
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture.
    Chaves MM; Oliveira MM
    J Exp Bot; 2004 Nov; 55(407):2365-84. PubMed ID: 15475377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Roles of drought-inducible genes in stress tolerance and signal transduction].
    Katagiri T; Nanjo T; Shinozaki K; Yamaguchi-Sinozaki K
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2188-98. PubMed ID: 10586656
    [No Abstract]   [Full Text] [Related]  

  • 9. Plant gene networks in osmotic stress response: from genes to regulatory networks.
    Tran LS; Nakashima K; Shinozaki K; Yamaguchi-Shinozaki K
    Methods Enzymol; 2007; 428():109-28. PubMed ID: 17875414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future.
    Umezawa T; Fujita M; Fujita Y; Yamaguchi-Shinozaki K; Shinozaki K
    Curr Opin Biotechnol; 2006 Apr; 17(2):113-22. PubMed ID: 16495045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic crops coping with water scarcity.
    Cominelli E; Tonelli C
    N Biotechnol; 2010 Nov; 27(5):473-7. PubMed ID: 20723623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.
    Shao HB; Chu LY; Jaleel CA; Manivannan P; Panneerselvam R; Shao MA
    Crit Rev Biotechnol; 2009; 29(2):131-51. PubMed ID: 19412828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory metabolic networks in drought stress responses.
    Seki M; Umezawa T; Urano K; Shinozaki K
    Curr Opin Plant Biol; 2007 Jun; 10(3):296-302. PubMed ID: 17468040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress.
    Xiao X; Yang F; Zhang S; Korpelainen H; Li C
    Physiol Plant; 2009 Jun; 136(2):150-68. PubMed ID: 19453505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Plant response to drought and salt stress: overview].
    Shinozaki K
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2186-7. PubMed ID: 10586655
    [No Abstract]   [Full Text] [Related]  

  • 16. Prospectives for applying molecular and genetic methodology to improve wheat cultivars in drought environments.
    Zhao CX; Guo LY; Jaleel CA; Shao HB; Yang HB
    C R Biol; 2008 Aug; 331(8):579-86. PubMed ID: 18606387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes.
    Kathuria H; Giri J; Nataraja KN; Murata N; Udayakumar M; Tyagi AK
    Plant Biotechnol J; 2009 Aug; 7(6):512-26. PubMed ID: 19490479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous expression of the TsVP gene improves the drought resistance of maize.
    Li B; Wei A; Song C; Li N; Zhang J
    Plant Biotechnol J; 2008 Feb; 6(2):146-59. PubMed ID: 17999658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings.
    Gorantla M; Babu PR; Lachagari VB; Reddy AM; Wusirika R; Bennetzen JL; Reddy AR
    J Exp Bot; 2007; 58(2):253-65. PubMed ID: 17132712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance.
    Yang O; Popova OV; Süthoff U; Lüking I; Dietz KJ; Golldack D
    Gene; 2009 May; 436(1-2):45-55. PubMed ID: 19248824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.