BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16483868)

  • 1. Caveolins and the regulation of endothelial nitric oxide synthase in the heart.
    Feron O; Balligand JL
    Cardiovasc Res; 2006 Mar; 69(4):788-97. PubMed ID: 16483868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The double regulation of endothelial nitric oxide synthase by caveolae and caveolin: a paradox solved through the study of angiogenesis.
    Sbaa E; Frérart F; Feron O
    Trends Cardiovasc Med; 2005 Jul; 15(5):157-62. PubMed ID: 16165011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity.
    Ohsawa Y; Toko H; Katsura M; Morimoto K; Yamada H; Ichikawa Y; Murakami T; Ohkuma S; Komuro I; Sunada Y
    Hum Mol Genet; 2004 Jan; 13(2):151-7. PubMed ID: 14645200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caveolae and caveolins in the cardiovascular system.
    Gratton JP; Bernatchez P; Sessa WC
    Circ Res; 2004 Jun; 94(11):1408-17. PubMed ID: 15192036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The calcium channel blocker amlodipine promotes the unclamping of eNOS from caveolin in endothelial cells.
    Batova S; DeWever J; Godfraind T; Balligand JL; Dessy C; Feron O
    Cardiovasc Res; 2006 Aug; 71(3):478-85. PubMed ID: 16814758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells.
    Maniatis NA; Brovkovych V; Allen SE; John TA; Shajahan AN; Tiruppathi C; Vogel SM; Skidgel RA; Malik AB; Minshall RD
    Circ Res; 2006 Oct; 99(8):870-7. PubMed ID: 16973909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and reinforces vagal inhibition of cardiac contraction.
    Massion PB; Dessy C; Desjardins F; Pelat M; Havaux X; Belge C; Moulin P; Guiot Y; Feron O; Janssens S; Balligand JL
    Circulation; 2004 Oct; 110(17):2666-72. PubMed ID: 15492314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough?
    Fulton D; Gratton JP; Sessa WC
    J Pharmacol Exp Ther; 2001 Dec; 299(3):818-24. PubMed ID: 11714864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caveolin, caveolae, and endothelial cell function.
    Frank PG; Woodman SE; Park DS; Lisanti MP
    Arterioscler Thromb Vasc Biol; 2003 Jul; 23(7):1161-8. PubMed ID: 12689915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of caveolin-1 in cardiovascular regulation.
    Rahman A; Swärd K
    Acta Physiol (Oxf); 2009 Feb; 195(2):231-45. PubMed ID: 18826501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HB-EGF stimulates eNOS expression and nitric oxide production and promotes eNOS dependent angiogenesis.
    Mehta VB; Zhou Y; Radulescu A; Besner GE
    Growth Factors; 2008 Dec; 26(6):301-15. PubMed ID: 18925469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of endothelial nitric oxide synthase: involvement of protein kinase G 1 beta, serine 116 phosphorylation and lipid structures.
    John TA; Ibe BO; Raj JU
    Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):148-58. PubMed ID: 17892503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of TGF-beta1 signaling by eNOS gene transfer improves ventricular remodeling after myocardial infarction through angiogenesis and reduction of apoptosis.
    Chen LL; Yin H; Huang J
    Cardiovasc Pathol; 2007; 16(4):221-30. PubMed ID: 17637430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation.
    Mount PF; Kemp BE; Power DA
    J Mol Cell Cardiol; 2007 Feb; 42(2):271-9. PubMed ID: 16839566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide and the heart: update on new paradigms.
    Belge C; Massion PB; Pelat M; Balligand JL
    Ann N Y Acad Sci; 2005 Jun; 1047():173-82. PubMed ID: 16093495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the mammalian heart function by nitric oxide.
    Massion PB; Pelat M; Belge C; Balligand JL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):144-50. PubMed ID: 15985381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caveolae, caveolin, and cavins: potential targets for the treatment of cardiac disease.
    Das M; Das DK
    Ann Med; 2012 Sep; 44(6):530-41. PubMed ID: 21651441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase.
    Li Q; Zhang Q; Wang M; Zhao S; Ma J; Luo N; Li N; Li Y; Xu G; Li J
    Biochimie; 2007 Jan; 89(1):169-77. PubMed ID: 17125900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caveolae and endothelial dysfunction: filling the caves in cardiovascular disease.
    Xu Y; Buikema H; van Gilst WH; Henning RH
    Eur J Pharmacol; 2008 May; 585(2-3):256-60. PubMed ID: 18423600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells.
    Feron O; Belhassen L; Kobzik L; Smith TW; Kelly RA; Michel T
    J Biol Chem; 1996 Sep; 271(37):22810-4. PubMed ID: 8798458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.