BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 1648400)

  • 1. Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination.
    Puntarulo S; Galleano M; Sanchez RA; Boveris A
    Biochim Biophys Acta; 1991 Jul; 1074(2):277-83. PubMed ID: 1648400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds.
    Gidrol X; Lin WS; Dégousée N; Yip SF; Kush A
    Eur J Biochem; 1994 Aug; 224(1):21-8. PubMed ID: 7521301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds.
    Singh KL; Chaudhuri A; Kar RK
    Plant Signal Behav; 2014; 9(8):e29278. PubMed ID: 25763616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of antioxidant enzyme activities in organ-cultured rhesus monkey lenses following peroxide challenge.
    Tumminia SJ; Chambers C; Qin C; Zigler JM; Russell P
    Curr Eye Res; 1996 Aug; 15(8):845-51. PubMed ID: 8921227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola.
    Fortunato AA; Debona D; Bernardeli AM; Rodrigues FÁ
    Phytopathology; 2015 Aug; 105(8):1050-8. PubMed ID: 25738549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.
    Cembrowska-Lech D; Koprowski M; Kępczyński J
    J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of H2O2 production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent H2O2-generating machinery.
    Nakamura Y; Makino R; Tanaka T; Ishimura Y; Ohtaki S
    Biochemistry; 1991 May; 30(20):4880-6. PubMed ID: 1645182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular accumulation and source of O
    Zhuang K; Shi D; Hu Z; Xu F; Chen Y; Shen Z
    Aquat Toxicol; 2019 Feb; 207():1-12. PubMed ID: 30500560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination.
    Puntarulo S; Sánchez RA; Boveris A
    Plant Physiol; 1988 Feb; 86(2):626-30. PubMed ID: 16665958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanin content and hydroperoxide metabolism in human melanoma cells.
    Bustamante J; Guerra L; Bredeston L; Mordoh J; Boveris A
    Exp Cell Res; 1991 Oct; 196(2):172-6. PubMed ID: 1893932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide generation by soybean embryonic axes. Possible effect on mitochondrial function.
    Caro A; Puntarulo S
    Free Radic Res; 1999 Dec; 31 Suppl():S205-12. PubMed ID: 10694061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalase, superoxide dismutase, and the production of O2-sensitive mutants of Bacillus coagulans.
    Vassilyadi M; Archibald F
    Can J Microbiol; 1985 Nov; 31(11):994-9. PubMed ID: 3004685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide.
    Thomas EL; Pera KA
    J Bacteriol; 1983 Jun; 154(3):1236-44. PubMed ID: 6304008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial hydrogen peroxide generation and activities of glutathione peroxidase and superoxide dismutase following global ischemia.
    Shlafer M; Myers CL; Adkins S
    J Mol Cell Cardiol; 1987 Dec; 19(12):1195-206. PubMed ID: 3443986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.
    Kranner I; Roach T; Beckett RP; Whitaker C; Minibayeva FV
    J Plant Physiol; 2010 Jul; 167(10):805-11. PubMed ID: 20303611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue.
    Weydert CJ; Cullen JJ
    Nat Protoc; 2010 Jan; 5(1):51-66. PubMed ID: 20057381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for superoxide dismutase and catalase in mollicutes and release of reactive oxygen species.
    Meier B; Habermehl GG
    Arch Biochem Biophys; 1990 Feb; 277(1):74-9. PubMed ID: 2154957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction.
    Gill T; Levine AD
    J Biol Chem; 2013 Sep; 288(36):26246-26255. PubMed ID: 23880762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased spontaneous chemiluminescence from liver homogenates and isolated hepatocytes upon inhibition of O2- and H2O2 utilization.
    Turrens JF; Giulivi C; Boveris A
    J Free Radic Biol Med; 1986; 2(2):135-40. PubMed ID: 3029209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.