These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 16484197)
1. Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals. Zhu Y; Conrad MC; Zhang Y; Roberts GP J Bacteriol; 2006 Mar; 188(5):1866-74. PubMed ID: 16484197 [TBL] [Abstract][Full Text] [Related]
2. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524 [TBL] [Abstract][Full Text] [Related]
3. Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regulatory system in Klebsiella pneumoniae. Zhang Y; Pohlmann EL; Halbleib CM; Ludden PW; Roberts GP J Bacteriol; 2001 Mar; 183(5):1610-20. PubMed ID: 11160092 [TBL] [Abstract][Full Text] [Related]
4. Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum. Zou X; Zhu Y; Pohlmann EL; Li J; Zhang Y; Roberts GP Microbiology (Reading); 2008 Sep; 154(Pt 9):2689-2699. PubMed ID: 18757802 [TBL] [Abstract][Full Text] [Related]
5. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2001 Nov; 183(21):6159-68. PubMed ID: 11591658 [TBL] [Abstract][Full Text] [Related]
6. Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Roberts GP Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2782-7. PubMed ID: 14970346 [TBL] [Abstract][Full Text] [Related]
7. Mutational analysis of GlnB residues critical for NifA activation in Azospirillum brasilense. Inaba J; Thornton J; Huergo LF; Monteiro RA; Klassen G; Pedrosa Fde O; Merrick M; de Souza EM Microbiol Res; 2015 Feb; 171():65-72. PubMed ID: 25644954 [TBL] [Abstract][Full Text] [Related]
8. Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum. Wolfe DM; Zhang Y; Roberts GP J Bacteriol; 2007 Oct; 189(19):6861-9. PubMed ID: 17644595 [TBL] [Abstract][Full Text] [Related]
9. The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. Moure VR; Danyal K; Yang ZY; Wendroth S; Müller-Santos M; Pedrosa FO; Scarduelli M; Gerhardt EC; Huergo LF; Souza EM; Seefeldt LC J Bacteriol; 2013 Jan; 195(2):279-86. PubMed ID: 23144248 [TBL] [Abstract][Full Text] [Related]
10. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Roberts GP J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189 [TBL] [Abstract][Full Text] [Related]
11. Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Teixeira PF; Jonsson A; Frank M; Wang H; Nordlund S Microbiology (Reading); 2008 Aug; 154(Pt 8):2336-2347. PubMed ID: 18667566 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis for the distinct divalent cation requirement in the uridylylation of the signal transduction proteins GlnJ and GlnB from Rhodospirillum rubrum. Teixeira PF; Dominguez-Martin MA; Nordlund S BMC Microbiol; 2012 Jul; 12():136. PubMed ID: 22769741 [TBL] [Abstract][Full Text] [Related]
13. In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense. Huergo LF; Merrick M; Monteiro RA; Chubatsu LS; Steffens MB; Pedrosa FO; Souza EM J Biol Chem; 2009 Mar; 284(11):6674-82. PubMed ID: 19131333 [TBL] [Abstract][Full Text] [Related]
14. Comparison studies of dinitrogenase reductase ADP-ribosyl transferase/dinitrogenase reductase activating glycohydrolase regulatory systems in Rhodospirillum rubrum and Azospirillum brasilense. Zhang Y; Burris RH; Ludden PW; Roberts GP J Bacteriol; 1995 May; 177(9):2354-9. PubMed ID: 7730264 [TBL] [Abstract][Full Text] [Related]
15. Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro. Bonatto AC; Souza EM; Oliveira MA; Monteiro RA; Chubatsu LS; Huergo LF; Pedrosa FO Arch Microbiol; 2012 Aug; 194(8):643-52. PubMed ID: 22382722 [TBL] [Abstract][Full Text] [Related]
16. Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense. Huergo LF; Chubatsu LS; Souza EM; Pedrosa FO; Steffens MB; Merrick M FEBS Lett; 2006 Oct; 580(22):5232-6. PubMed ID: 16963029 [TBL] [Abstract][Full Text] [Related]
17. Functional analysis of the GAF domain of NifA in Azospirillum brasilense: effects of Tyr-->Phe mutations on NifA and its interaction with GlnB. Chen S; Liu L; Zhou X; Elmerich C; Li JL Mol Genet Genomics; 2005 Jun; 273(5):415-22. PubMed ID: 15887032 [TBL] [Abstract][Full Text] [Related]
18. Different responses of the GlnB and GlnZ proteins upon in vitro uridylylation by the Azospirillum brasilense GlnD protein. Araújo LM; Huergo LF; Invitti AL; Gimenes CI; Bonatto AC; Monteiro RA; Souza EM; Pedrosa FO; Chubatsu LS Braz J Med Biol Res; 2008 Apr; 41(4):289-94. PubMed ID: 18392451 [TBL] [Abstract][Full Text] [Related]
19. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Zhang Y; Pohlmann EL; Conrad MC; Roberts GP Mol Microbiol; 2006 Jul; 61(2):497-510. PubMed ID: 16762025 [TBL] [Abstract][Full Text] [Related]
20. Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signalling. Maheswaran M; Forchhammer K Microbiology (Reading); 2003 Aug; 149(Pt 8):2163-2172. PubMed ID: 12904556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]