These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 16484487)

  • 1. Electrodes with high power and high capacity for rechargeable lithium batteries.
    Kang K; Meng YS; Bréger J; Grey CP; Ceder G
    Science; 2006 Feb; 311(5763):977-80. PubMed ID: 16484487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications.
    Taberna PL; Mitra S; Poizot P; Simon P; Tarascon JM
    Nat Mater; 2006 Jul; 5(7):567-73. PubMed ID: 16783360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional calculation for Li2CuSn as an electrode material for rechargeable batteries.
    Reshak AH; Ordóñez Ortíz DA
    J Phys Chem B; 2009 Oct; 113(40):13208-15. PubMed ID: 19754092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study.
    Okumura T; Fukutsuka T; Matsumoto K; Orikasa Y; Arai H; Ogumi Z; Uchimoto Y
    Dalton Trans; 2011 Oct; 40(38):9752-64. PubMed ID: 21869978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of activation energy for Li ion diffusion in electrodes.
    Okubo M; Tanaka Y; Zhou H; Kudo T; Honma I
    J Phys Chem B; 2009 Mar; 113(9):2840-7. PubMed ID: 19708215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiCo(x)Mn(1-x)PO4/C: a high performing nanocomposite cathode material for lithium rechargeable batteries.
    Nithya C; Thirunakaran R; Sivashanmugam A; Gopukumar S
    Chem Asian J; 2012 Jan; 7(1):163-8. PubMed ID: 22002902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials for rechargeable lithium batteries.
    Bruce PG; Scrosati B; Tarascon JM
    Angew Chem Int Ed Engl; 2008; 47(16):2930-46. PubMed ID: 18338357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode.
    Okubo M; Hosono E; Kim J; Enomoto M; Kojima N; Kudo T; Zhou H; Honma I
    J Am Chem Soc; 2007 Jun; 129(23):7444-52. PubMed ID: 17511453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronically conductive phospho-olivines as lithium storage electrodes.
    Chung SY; Bloking JT; Chiang YM
    Nat Mater; 2002 Oct; 1(2):123-8. PubMed ID: 12618828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.