BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16484721)

  • 1. Surface modification of neural probes with conducting polymer poly(hydroxymethylated-3,4- ethylenedioxythiophene) and its biocompatibility.
    Xiao Y; Martin DC; Cui X; Shenai M
    Appl Biochem Biotechnol; 2006 Feb; 128(2):117-30. PubMed ID: 16484721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends.
    Cui X; Lee VA; Raphael Y; Wiler JA; Hetke JF; Anderson DJ; Martin DC
    J Biomed Mater Res; 2001 Aug; 56(2):261-72. PubMed ID: 11340598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes.
    Yang J; Kim DH; Hendricks JL; Leach M; Northey R; Martin DC
    Acta Biomater; 2005 Jan; 1(1):125-36. PubMed ID: 16701786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofunctionalization of PEDOT films with laminin-derived peptides.
    Bhagwat N; Murray RE; Shah SI; Kiick KL; Martin DC
    Acta Biomater; 2016 Sep; 41():235-46. PubMed ID: 27181880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell attachment functionality of bioactive conducting polymers for neural interfaces.
    Green RA; Lovell NH; Poole-Warren LA
    Biomaterials; 2009 Aug; 30(22):3637-44. PubMed ID: 19375160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.
    Abidian MR; Martin DC
    Biomaterials; 2008 Mar; 29(9):1273-83. PubMed ID: 18093644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conducting polymer coated neural recording electrodes.
    Harris AR; Morgan SJ; Chen J; Kapsa RM; Wallace GG; Paolini AG
    J Neural Eng; 2013 Feb; 10(1):016004. PubMed ID: 23234724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties.
    Green RA; Lovell NH; Poole-Warren LA
    Acta Biomater; 2010 Jan; 6(1):63-71. PubMed ID: 19563922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes.
    Baek S; Green RA; Poole-Warren LA
    J Biomed Mater Res A; 2014 Aug; 102(8):2743-54. PubMed ID: 24027227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Luo X; Weaver CL; Zhou DD; Greenberg R; Cui XT
    Biomaterials; 2011 Aug; 32(24):5551-7. PubMed ID: 21601278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells.
    Richardson-Burns SM; Hendricks JL; Foster B; Povlich LK; Kim DH; Martin DC
    Biomaterials; 2007 Mar; 28(8):1539-52. PubMed ID: 17169420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of a clot-binding peptide into polythiophene: properties of composites for biomedical applications.
    Fabregat G; Teixeira-Dias B; del Valle LJ; Armelin E; Estrany F; Alemán C
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11940-54. PubMed ID: 25069384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long term performance of porous platinum coated neural electrodes.
    Leber M; Bhandari R; Mize J; Warren DJ; Shandhi MMH; Solzbacher F; Negi S
    Biomed Microdevices; 2017 Sep; 19(3):62. PubMed ID: 28688070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
    Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT
    Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Cui XT; Zhou DD
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):502-8. PubMed ID: 18198707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices.
    Yang J; Lipkin K; Martin DC
    J Biomater Sci Polym Ed; 2007; 18(8):1075-89. PubMed ID: 17705999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings.
    Kozai TD; Catt K; Du Z; Na K; Srivannavit O; Haque RU; Seymour J; Wise KD; Yoon E; Cui XT
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):111-9. PubMed ID: 26087481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electropolymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) Coatings for Implantable Deep-Brain-Stimulating Microelectrodes.
    Bodart C; Rossetti N; Hagler J; Chevreau P; Chhin D; Soavi F; Schougaard SB; Amzica F; Cicoira F
    ACS Appl Mater Interfaces; 2019 May; 11(19):17226-17233. PubMed ID: 30978001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.