These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16485317)

  • 21. Structure and mechanism of a metal-sensing regulatory RNA.
    Dann CE; Wakeman CA; Sieling CL; Baker SC; Irnov I; Winkler WC
    Cell; 2007 Sep; 130(5):878-92. PubMed ID: 17803910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallization of the glmS ribozyme-riboswitch.
    Klein DJ; Ferré-D'Amaré AR
    Methods Mol Biol; 2009; 540():129-39. PubMed ID: 19381557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of ligand recognition by a glmS self-cleaving ribozyme.
    Lim J; Grove BC; Roth A; Breaker RR
    Angew Chem Int Ed Engl; 2006 Oct; 45(40):6689-93. PubMed ID: 16986193
    [No Abstract]   [Full Text] [Related]  

  • 24. A tertiary structural element in S box leader RNAs is required for S-adenosylmethionine-directed transcription termination.
    McDaniel BA; Grundy FJ; Henkin TM
    Mol Microbiol; 2005 Aug; 57(4):1008-21. PubMed ID: 16091040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Use of a bacterial system of selection based on Bacillus subtilis for selecting mutant ribozymes that function effectively in vivo].
    Belzhelarskaia SN; Orlovskiĭ IV; Nikitenko SV
    Dokl Akad Nauk; 1996 Mar; 347(1):113-6. PubMed ID: 8768120
    [No Abstract]   [Full Text] [Related]  

  • 26. Increasing the stability of sacB transcript improves levansucrase production in Bacillus subtilis.
    Daguer JP; Chambert R; Petit-Glatron MF
    Lett Appl Microbiol; 2005; 41(2):221-6. PubMed ID: 16033525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rate-limiting conformational step in the catalytic pathway of the glmS ribozyme.
    Brooks KM; Hampel KJ
    Biochemistry; 2009 Jun; 48(24):5669-78. PubMed ID: 19449899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structural and functional uniqueness of the glmS ribozyme.
    Soukup JK
    Prog Mol Biol Transl Sci; 2013; 120():173-93. PubMed ID: 24156944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal amplification of glucosamine-6-phosphate based on ribozyme glmS.
    Zhao Y; Chen H; Du F; Yasmeen A; Dong J; Cui X; Tang Z
    Biosens Bioelectron; 2014 Dec; 62():337-42. PubMed ID: 25038539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism.
    Choonee N; Even S; Zig L; Putzer H
    Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
    Roth A; Winkler WC; Regulski EE; Lee BW; Lim J; Jona I; Barrick JE; Ritwik A; Kim JN; Welz R; Iwata-Reuyl D; Breaker RR
    Nat Struct Mol Biol; 2007 Apr; 14(4):308-17. PubMed ID: 17384645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An allosteric self-splicing ribozyme triggered by a bacterial second messenger.
    Lee ER; Baker JL; Weinberg Z; Sudarsan N; Breaker RR
    Science; 2010 Aug; 329(5993):845-848. PubMed ID: 20705859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid steps in the glmS ribozyme catalytic pathway: cation and ligand requirements.
    Brooks KM; Hampel KJ
    Biochemistry; 2011 Apr; 50(13):2424-33. PubMed ID: 21395279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme.
    Jansen JA; McCarthy TJ; Soukup GA; Soukup JK
    Nat Struct Mol Biol; 2006 Jun; 13(6):517-23. PubMed ID: 16699515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus.
    Lünse CE; Schmidt MS; Wittmann V; Mayer G
    ACS Chem Biol; 2011 Jul; 6(7):675-8. PubMed ID: 21486059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution.
    Buck J; Fürtig B; Noeske J; Wöhnert J; Schwalbe H
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15699-704. PubMed ID: 17895388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis.
    Kumarevel T
    Biophys Chem; 2007 Jun; 128(1):1-12. PubMed ID: 17395359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5' rpoS mRNA leader region.
    Updegrove T; Wilf N; Sun X; Wartell RM
    Biochemistry; 2008 Oct; 47(43):11184-95. PubMed ID: 18826256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence-dependent folding and unfolding of ligand-bound purine riboswitches.
    Prychyna O; Dahabieh MS; Chao J; O'Neill MA
    Biopolymers; 2009 Nov; 91(11):953-65. PubMed ID: 19603494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high-precision switch on an RNA message.
    Kräutler B
    Angew Chem Int Ed Engl; 2005 Jul; 44(28):4288-90. PubMed ID: 15945115
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.