These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16485654)

  • 21. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase.
    Li X; Zhou Y; Zheng Z; Yue X; Dai Z; Liu S; Tang Z
    Langmuir; 2009 Jun; 25(11):6580-6. PubMed ID: 19260661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.
    Yasuzawa M; Omura Y; Hiura K; Li J; Fuchiwaki Y; Tanaka M
    Anal Sci; 2015; 31(11):1111-4. PubMed ID: 26561252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber.
    Amaya Vergara MC; Cortés Gómez MP; Restrepo Restrepo MC; Manrique Henao J; Pereira Soto MA; Gañán Rojo PF; Castro Herazo CI; Zuluaga Gallego R
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly selective needle-type glucose sensors prepared by the immobilization of glucose oxidase on γ-polyglutamic acid film.
    Yasuzawa M; Edagawa K; Matsunaga T; Takaoka H; Yabutani T
    Anal Sci; 2011; 27(3):337-40. PubMed ID: 21415521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Adaptation of amperometric enzyme biosensor for glucose analysis in wine].
    Shkotova LV; Soldatkin AP; Dziadevich SV
    Ukr Biokhim Zh (1999); 2004; 76(3):114-21. PubMed ID: 19621749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological wood. Part II: hardwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2009 Jul; 63(7):753-8. PubMed ID: 19589212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes.
    Guan WJ; Li Y; Chen YQ; Zhang XB; Hu GQ
    Biosens Bioelectron; 2005 Sep; 21(3):508-12. PubMed ID: 16076441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amperometric glucose biosensor based on polymerized ionic liquid microparticles.
    López MS; Mecerreyes D; López-Cabarcos E; López-Ruiz B
    Biosens Bioelectron; 2006 Jun; 21(12):2320-8. PubMed ID: 16616485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of amperometric glucose biosensor by the immobilization of FcCD inclusive complex and carbon nanotube.
    Zheng L; Li J; Xu J; Xiong L; Zheng D; Liu Q; Liu W; Li Y; Yang S; Xia J
    Analyst; 2010 Jun; 135(6):1339-44. PubMed ID: 20498884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel, cost-effective and eco-friendly method for preparation of textile fibers from cellulosic pulps.
    Alam MN; Christopher LP
    Carbohydr Polym; 2017 Oct; 173():253-258. PubMed ID: 28732863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material.
    Wang B; Li B; Deng Q; Dong S
    Anal Chem; 1998 Aug; 70(15):3170-4. PubMed ID: 11013720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.
    Palod PA; Singh V
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():420-30. PubMed ID: 26117773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A noninterference polypyrrole glucose biosensor.
    Chen C; Jiang Y; Kan J
    Biosens Bioelectron; 2006 Dec; 22(5):639-43. PubMed ID: 16540308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A facile method to regulate enzyme load on biosensor electrode based on avidin/biotin complexation.
    He PG; Takahashi T; Anzai J; Suzuki Y; Osa T
    Pharmazie; 1994 Aug; 49(8):621-2. PubMed ID: 7938158
    [No Abstract]   [Full Text] [Related]  

  • 36. A nanoceria-platinum-graphene nanocomposite for electrochemical biosensing.
    Chaturvedi P; Vanegas DC; Taguchi M; Burrs SL; Sharma P; McLamore ES
    Biosens Bioelectron; 2014 Aug; 58():179-85. PubMed ID: 24637166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.
    Shrestha BK; Ahmad R; Mousa HM; Kim IG; Kim JI; Neupane MP; Park CH; Kim CS
    J Colloid Interface Sci; 2016 Nov; 482():39-47. PubMed ID: 27485503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase.
    Graça JS; de Oliveira RF; de Moraes ML; Ferreira M
    Bioelectrochemistry; 2014 Apr; 96():37-42. PubMed ID: 24491835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes@SnO(2)-Au composite.
    Li F; Song J; Li F; Wang X; Zhang Q; Han D; Ivaska A; Niu L
    Biosens Bioelectron; 2009 Dec; 25(4):883-8. PubMed ID: 19767194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of glucose biosensor by using gelatin and gelatin-polyacrylamide supporting systems.
    Sungur S; Numanoğlu Y
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(1):41-54. PubMed ID: 16519403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.