These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16485688)

  • 1. Determination of refractive index profiles of Ag+ -Na+ ion-exchange multimode strip waveguides by variable wavefront shear double-refracting interferometry microinterferometry.
    Mrozek P; Mrozek E; Lukaszewicz T
    Appl Opt; 2006 Feb; 45(4):756-63. PubMed ID: 16485688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modeling of field-assisted ion-exchanged channel waveguides by the explicit consideration of space-charge buildup.
    Mrozek P
    Appl Opt; 2011 Aug; 50(22):4499-508. PubMed ID: 21833126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side diffusion modeling by the explicit consideration of a space-charge buildup under the mask during strip waveguide formation in the Ag+ -Na+ field-assisted ion-exchange process.
    Mrozek P; Mrozek E; Lukaszewicz T
    Appl Opt; 2006 Feb; 45(4):619-25. PubMed ID: 16485671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and modeling of planar surface and buried glass waveguides made by field-assisted K(+) ion exchange.
    Noutsios PG; Yip GL
    Appl Opt; 1992 Sep; 31(25):5283-91. PubMed ID: 20733707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and experimental investigation on Ag+-Na+ field assisted ion-exchanged channel waveguides.
    Mrozek P
    Appl Opt; 2012 Jul; 51(20):4574-81. PubMed ID: 22781231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar waveguides formed by Ag+-Na+ ion exchange in nonlinear optical glasses: diffusion and optical properties.
    Martin M; Videau JJ; Canioni L; Adamietz F; Sarger L; Le Flem G
    Appl Opt; 2000 Jan; 39(3):435-40. PubMed ID: 18337913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed study of silver metallic film diffusion in a soda-lime glass substrate for optical waveguide fabrication.
    Belkhir A
    Appl Opt; 2002 May; 41(15):2888-93. PubMed ID: 12027176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated optical waveguides: refractive-index profile control by temperature and electric-field programming.
    Kapila D; Plawsky JL
    Appl Opt; 1995 Dec; 34(34):8011-3. PubMed ID: 21068898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tapered waveguides for guided wave optics.
    Campbell JC
    Appl Opt; 1979 Mar; 18(6):900-2. PubMed ID: 20208841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic modeling study of channel waveguide fabrication by thermal silver ion exchange.
    Li G; Winick KA; Griffin HC; Hayden JS
    Appl Opt; 2006 Mar; 45(8):1743-55. PubMed ID: 16572690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical waveguides formed by silver ion exchange in Schott SG11 glass for waveguide evanescent field fluorescence microscopy: evanescent images of HEK293 cells.
    Hassanzadeh A; Nitsche M; Armstrong S; Nabavi N; Harrison R; Dixon SJ; Langbein U; Mittler S
    J Biomed Opt; 2010; 15(3):036018. PubMed ID: 20615020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process optimization of buried Ag(+)-Na(+) ion-exchanged waveguides: theory and experiment.
    Ramaswamy RV; Cheng HC; Srivastava R
    Appl Opt; 1988 May; 27(9):1814-9. PubMed ID: 20531659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization and optimization of planar refracting microlenses by Ag-Na ion-exchange techniques.
    Bähr J; Brenner KH
    Appl Opt; 1996 Sep; 35(25):5102-7. PubMed ID: 21102943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of refractive-index profile of Ag+-Na+ ion-exchange channel waveguide by two-dimensional inverse matrix method.
    Ma YF; Wei J; Pei JH; Kang ZH; Jiang Y; Gao JY
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):025104. PubMed ID: 18315326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step K(+)-Na+ and Ag(+)-Na+ ion-exchanged glass waveguides for C-band applications.
    Zou J; Zhao F; Chen RT
    Appl Opt; 2002 Dec; 41(36):7620-6. PubMed ID: 12510929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of optical waveguides made by electric-field-assisted K(+)-ion exchange.
    Yip GL; Noutsios PC; Kishioka K
    Opt Lett; 1990 Jul; 15(14):789-91. PubMed ID: 19768079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of two dimensional refractive index profiles of channel waveguides using an interferometric technique.
    Oven R
    Appl Opt; 2009 Oct; 48(30):5704-12. PubMed ID: 19844304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical channel waveguides by copper ion-exchange in glass.
    Salazar D; Porte H; Márquez H
    Appl Opt; 1997 Dec; 36(34):8987-91. PubMed ID: 18264454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced optical effects in Ag(+)-Na(+) ion-exchanged glass waveguides.
    Gonella F
    Opt Lett; 1992 Dec; 17(23):1667-9. PubMed ID: 19798278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of ion-exchanged channel waveguide profile parameters by mode-index measurements.
    Weiss MN; Srivastava R
    Appl Opt; 1995 Jan; 34(3):455-8. PubMed ID: 20963139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.