BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 16485762)

  • 21. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
    Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantable flexible electrodes for functional electrical stimulation.
    Schneider A; Stieglitz T
    Med Device Technol; 2004; 15(1):16-8. PubMed ID: 14994633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A laboratory testing and driving system for AIROF microelectrodes.
    Srivastava NR; Troyk PR; Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4271-4. PubMed ID: 17271248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array.
    Yoo JM; Negi S; Tathireddy P; Solzbacher F; Song JI; Rieth LW
    J Neurosci Methods; 2013 Apr; 215(1):78-87. PubMed ID: 23458659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer.
    Wang K; Liu CC; Durand DM
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):6-14. PubMed ID: 19224713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charge injection characteristics of sputtered ruthenium oxide electrodes for neural stimulation and recording.
    Chakraborty B; Joshi-Imre A; Cogan SF
    J Biomed Mater Res B Appl Biomater; 2022 Jan; 110(1):229-238. PubMed ID: 34259381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatibility and charge injection property of iridium film formed by ion beam assisted deposition.
    Lee IS; Whang CN; Park JC; Lee DH; Seo WS
    Biomaterials; 2003 Jun; 24(13):2225-31. PubMed ID: 12699658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A charge-balanced pulse generator for nerve stimulation applications.
    Gwilliam JC; Horch K
    J Neurosci Methods; 2008 Feb; 168(1):146-50. PubMed ID: 17950907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible electrode technology for peripheral nerve interfacing.
    Durand DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6060. PubMed ID: 18003396
    [No Abstract]   [Full Text] [Related]  

  • 33. Offset prediction for charge-balanced stimulus waveforms.
    Woods VM; Triantis IF; Toumazou C
    J Neural Eng; 2011 Aug; 8(4):046032. PubMed ID: 21753229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Batch-fabricated thin-film electrodes for stimulation of the central auditory system.
    Anderson DJ; Najafi K; Tanghe SJ; Evans DA; Levy KL; Hetke JF; Xue XL; Zappia JJ; Wise KD
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):693-704. PubMed ID: 2744793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel technique for increasing charge injection capacity of neural electrodes for efficacious and safe neural stimulation.
    Negi S; Bhandari R; Solzbacher F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5142-5. PubMed ID: 23367086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 96-channel neural stimulation system for driving AIROF microelectrodes.
    Hu Z; Troyk P; Cogan S
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4244-7. PubMed ID: 17271241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge-injection densities of iridium and iridium-ion-implanted Ti-6A1-4V with relevancy to neural stimulation.
    Lee IS; Buchanan RA; Williams JM
    J Biomed Mater Res; 1991 Aug; 25(8):1039-43. PubMed ID: 1918107
    [No Abstract]   [Full Text] [Related]  

  • 38. Contribution of oxygen reduction to charge injection on platinum and sputtered iridium oxide neural stimulation electrodes.
    Cogan SF; Ehrlich J; Plante TD; Gingerich MD; Shire DB
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2313-21. PubMed ID: 20515708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optoelectronic retinal prosthesis: system design and performance.
    Loudin JD; Simanovskii DM; Vijayraghavan K; Sramek CK; Butterwick AF; Huie P; McLean GY; Palanker DV
    J Neural Eng; 2007 Mar; 4(1):S72-84. PubMed ID: 17325419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.