These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
629 related articles for article (PubMed ID: 16485930)
1. Relaxation of the distribution function tails for systems described by Fokker-Planck equations. Chavanis PH; Lemou M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930 [TBL] [Abstract][Full Text] [Related]
2. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. Shizgal BD Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998 [TBL] [Abstract][Full Text] [Related]
3. Kinetic theory of point vortices: diffusion coefficient and systematic drift. Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026309. PubMed ID: 11497701 [TBL] [Abstract][Full Text] [Related]
4. Collisional relaxation of two-dimensional self-gravitating systems. Marcos B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032112. PubMed ID: 24125219 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Kaniadakis G; Hristopulos DT Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516 [TBL] [Abstract][Full Text] [Related]
6. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
7. Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics. Bouchet F; Dauxois T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):045103. PubMed ID: 16383452 [TBL] [Abstract][Full Text] [Related]
8. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
9. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach. Trigger SA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497 [TBL] [Abstract][Full Text] [Related]
10. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
11. Fokker-Planck equation for Coulomb relaxation and wave-particle diffusion: Spectral solution and the stability of the Kappa distribution to Coulomb collisions. Zhang W; Shizgal BD Phys Rev E; 2020 Dec; 102(6-1):062103. PubMed ID: 33466053 [TBL] [Abstract][Full Text] [Related]
12. Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence. Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036108. PubMed ID: 14524833 [TBL] [Abstract][Full Text] [Related]
13. Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion. Abe S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016102. PubMed ID: 14995662 [TBL] [Abstract][Full Text] [Related]
14. Grid-free powder averages: on the applications of the Fokker-Planck equation to solid state NMR. Edwards LJ; Savostyanov DV; Nevzorov AA; Concistrè M; Pileio G; Kuprov I J Magn Reson; 2013 Oct; 235():121-9. PubMed ID: 23942141 [TBL] [Abstract][Full Text] [Related]
15. Universality classes of transport in time-dependent random potentials. Krivolapov Y; Fishman S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):030103. PubMed ID: 23030853 [TBL] [Abstract][Full Text] [Related]
16. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag. Plastino AR; Curado EMF; Nobre FD; Tsallis C Phys Rev E; 2018 Feb; 97(2-1):022120. PubMed ID: 29548132 [TBL] [Abstract][Full Text] [Related]
17. Exponential Stability and Hypoelliptic Regularization for the Kinetic Fokker-Planck Equation with Confining Potential. Arnold A; Toshpulatov G J Stat Phys; 2024; 191(5):51. PubMed ID: 38686172 [TBL] [Abstract][Full Text] [Related]
18. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory. Zhan Y; Shizgal BD Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642 [TBL] [Abstract][Full Text] [Related]
19. From Jupiter's Great Red Spot to the structure of galaxies: statistical mechanics of two-dimensional vortices and stellar systems. Chavanis PH Ann N Y Acad Sci; 1998 Dec; 867():120-40. PubMed ID: 12088035 [TBL] [Abstract][Full Text] [Related]
20. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient. Milovanov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]