These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 16485975)

  • 1. Pressure-dependent transition in protein dynamics at about revealed by molecular dynamics simulation.
    Meinhold L; Smith JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061908. PubMed ID: 16485975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated dynamics determining x-ray diffuse scattering from a crystalline protein revealed by molecular dynamics simulation.
    Meinhold L; Smith JC
    Phys Rev Lett; 2005 Nov; 95(21):218103. PubMed ID: 16384188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding stability and cooperativity of the three forms of 1-110 residues fragment of staphylococcal nuclease.
    Xie T; Liu D; Feng Y; Shan L; Wang J
    Biophys J; 2007 Mar; 92(6):2090-107. PubMed ID: 17172296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure denaturation of staphylococcal nuclease studied by neutron small-angle scattering and molecular simulation.
    Paliwal A; Asthagiri D; Bossev DP; Paulaitis ME
    Biophys J; 2004 Nov; 87(5):3479-92. PubMed ID: 15347583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuations and correlations in crystalline protein dynamics: a simulation analysis of staphylococcal nuclease.
    Meinhold L; Smith JC
    Biophys J; 2005 Apr; 88(4):2554-63. PubMed ID: 15681654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins.
    Damjanović A; Schlessman JL; Fitch CA; García AE; García-Moreno E B
    Biophys J; 2007 Oct; 93(8):2791-804. PubMed ID: 17604315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration-dependent protein dynamics revealed by molecular dynamics simulation of crystalline staphylococcal nuclease.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    J Phys Chem B; 2008 Mar; 112(11):3522-8. PubMed ID: 18293961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of water penetration in staphylococcal nuclease.
    Damjanović A; García-Moreno B; Lattman EE; García AE
    Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.
    Wall ME; Van Benschoten AH; Sauter NK; Adams PD; Fraser JS; Terwilliger TC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17887-92. PubMed ID: 25453071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the cosolvent effect on the partial molar volume change of staphylococcal nuclease associated with pressure denaturation.
    Yamazaki T; Imai T; Hirata F; Kovalenko A
    J Phys Chem B; 2007 Feb; 111(5):1206-12. PubMed ID: 17266276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.
    Moritsugu K; Kidera A; Smith JC
    J Phys Chem B; 2014 Jul; 118(29):8559-65. PubMed ID: 24999844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of protein cavities on unfolding volume change and on internal dynamics under pressure.
    Cioni P
    Biophys J; 2006 Nov; 91(9):3390-6. PubMed ID: 17038664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns.
    Meinhold L; Smith JC
    Proteins; 2007 Mar; 66(4):941-53. PubMed ID: 17154425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure.
    Smolin N; Winter R
    Biochim Biophys Acta; 2006 Mar; 1764(3):522-34. PubMed ID: 16469548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional diffuse x-ray scattering from crystals of Staphylococcal nuclease.
    Wall ME; Ealick SE; Gruner SM
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6180-4. PubMed ID: 9177191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying pressure denaturation of a protein by molecular dynamics simulations.
    Sarupria S; Ghosh T; García AE; Garde S
    Proteins; 2010 May; 78(7):1641-51. PubMed ID: 20146357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.