These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16486018)

  • 1. Elastic properties of small-world spring networks.
    Ramezanpour A; Vaez Allaei SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066115. PubMed ID: 16486018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractality in complex networks: critical and supercritical skeletons.
    Kim JS; Goh KI; Salvi G; Oh E; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016110. PubMed ID: 17358227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling properties of random walks on small-world networks.
    Almaas E; Kulkarni RV; Stroud D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056105. PubMed ID: 14682844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverted Berezinskii-Kosterlitz-Thouless singularity and high-temperature algebraic order in an Ising model on a scale-free hierarchical-lattice small-world network.
    Hinczewski M; Nihat Berker A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066126. PubMed ID: 16906933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damage spreading in spatial and small-world random Boolean networks.
    Lu Q; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022806. PubMed ID: 25353533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Navigation in a small world with local information.
    Zhu H; Huang ZX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036117. PubMed ID: 15524597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating-function approach for bond percolation in hierarchical networks.
    Hasegawa T; Sato M; Nemoto K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046101. PubMed ID: 21230339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral dimensions of hierarchical scale-free networks with weighted shortcuts.
    Hwang S; Yun CK; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056110. PubMed ID: 21230548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes.
    Gao J; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066134. PubMed ID: 23005189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensation phenomena of a conserved-mass aggregation model on weighted complex networks.
    Kwon S; Yoon S; Kim Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066105. PubMed ID: 18643334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal paths in complex networks with correlated weights: the worldwide airport network.
    Wu Z; Braunstein LA; Colizza V; Cohen R; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056104. PubMed ID: 17279965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasistatic scale-free networks.
    Mukherjee G; Manna SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):012101. PubMed ID: 12636538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.
    Zhang Z; Zhou S; Xie W; Chen L; Lin Y; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061113. PubMed ID: 19658479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-free trees: the skeletons of complex networks.
    Kim DH; Noh JD; Jeong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046126. PubMed ID: 15600479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random-walk access times on partially disordered complex networks: an effective medium theory.
    Parris PE; Candia J; Kenkre VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061113. PubMed ID: 18643223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible construction of hierarchical scale-free networks with general exponent.
    Nacher JC; Ueda N; Kanehisa M; Akutsu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036132. PubMed ID: 15903518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling properties of scale-free evolving networks: continuous approach.
    Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056125. PubMed ID: 11414979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mean-field solution of the small-world network model.
    Newman ME; Moore C; Watts DJ
    Phys Rev Lett; 2000 Apr; 84(14):3201-4. PubMed ID: 11019047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced flow in small-world networks.
    Oliveira CL; Morais PA; Moreira AA; Andrade JS
    Phys Rev Lett; 2014 Apr; 112(14):148701. PubMed ID: 24766030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partition of networks into basins of attraction.
    Carmi S; Krapivsky PL; Ben-Avraham D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066111. PubMed ID: 19256909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.