These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16486029)

  • 41. Front propagation in a bistable system: how the energy is released.
    Smirnov VV; Gendelman OV; Manevitch LI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):050901. PubMed ID: 25353732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reaction front formation in contaminant plumes.
    Cribbin LB; Winstanley HF; Mitchell SL; Fowler AC; Sander GC
    J Contam Hydrol; 2014 Dec; 171():12-21. PubMed ID: 25461883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Front bifurcation in a tristable reaction-diffusion system under periodic forcing.
    Zemskov EP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036208. PubMed ID: 15089393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Front propagation and diffusion in the A left arrow over right arrow A+A hard-core reaction on a chain.
    Panja D; Tripathy G; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046206. PubMed ID: 12786459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental studies of coherent structures in an advection-reaction-diffusion system.
    Gowen S; Solomon T
    Chaos; 2015 Aug; 25(8):087403. PubMed ID: 26328574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Current fluctuations in a particle-nonconserving reaction-diffusion process.
    Torkaman P; Jafarpour FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012138. PubMed ID: 23410314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamics and diffusion of a lattice gas on a simple cubic lattice.
    Argyrakis P; Groda YG; Bokun GS; Vikhrenko VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066108. PubMed ID: 11736237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Failure of steady-state thermodynamics in nonuniform driven lattice gases.
    Dickman R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062123. PubMed ID: 25615060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Collective diffusion in two-dimensional systems: exact analysis based on the kinetic lattice gas model.
    Payne SH; Kreuzer HJ
    J Phys Condens Matter; 2009 Apr; 21(13):134013. PubMed ID: 21817488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaction-diffusion fronts in media with spatially discrete sources.
    Goroshin S; Tang FD; Higgins AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):027301. PubMed ID: 21929144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exactly soluble noisy traveling-wave equation appearing in the problem of directed polymers in a random medium.
    Brunet E; Derrida B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016106. PubMed ID: 15324128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion.
    Müller J; Van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061111. PubMed ID: 12188707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Field theory of propagating reaction-diffusion fronts.
    Escudero C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041102. PubMed ID: 15600392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrodynamics, superfluidity, and giant number fluctuations in a model of self-propelled particles.
    Chakraborty T; Chakraborti S; Das A; Pradhan P
    Phys Rev E; 2020 May; 101(5-1):052611. PubMed ID: 32575180
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bistable reaction-diffusion systems can have robust zero-velocity fronts.
    Sepulchre JA; Krinsky VI
    Chaos; 2000 Dec; 10(4):826-833. PubMed ID: 12779432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Front propagation and clustering in the stochastic nonlocal Fisher equation.
    Ganan YA; Kessler DA
    Phys Rev E; 2018 Apr; 97(4-1):042213. PubMed ID: 29758694
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion.
    Curtis CW; Bortz DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066108. PubMed ID: 23368005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lock-exchange experiments with an autocatalytic reaction front.
    Bou Malham I; Jarrige N; Martin J; Rakotomalala N; Talon L; Salin D
    J Chem Phys; 2010 Dec; 133(24):244505. PubMed ID: 21198000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Front propagation into an unstable state of reaction-transport systems.
    Fedotov S
    Phys Rev Lett; 2001 Jan; 86(5):926-9. PubMed ID: 11177975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.