These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16486044)

  • 21. Formation of localized structures in bistable systems through nonlocal spatial coupling. I. General framework.
    Colet P; Matías MA; Gelens L; Gomila D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012914. PubMed ID: 24580304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
    Echebarria B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051911. PubMed ID: 18233691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonance tongues in a system of globally coupled FitzHugh-Nagumo oscillators with time-periodic coupling strength.
    Bîrzu A; Krischer K
    Chaos; 2010 Dec; 20(4):043114. PubMed ID: 21198084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations.
    Nagao R; Zou W; Kurths J; Kiss IZ
    Chaos; 2016 Sep; 26(9):094808. PubMed ID: 27781452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the surface fine structure through electrochemical oscillations.
    Previdello BAF; Fernández PS; Tremiliosi-Filho G; Varela H
    Phys Chem Chem Phys; 2018 Feb; 20(8):5674-5682. PubMed ID: 29424846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chaotic synchronization under unidirectional coupling: numerics and experiments.
    Cruz JM; Rivera M; Parmananda P
    J Phys Chem A; 2009 Aug; 113(32):9051-6. PubMed ID: 19610633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parametric instability-induced synchronization in chemical oscillations and spatiotemporal patterns.
    Paul S; Pal K; Ray DS
    Phys Rev E; 2020 Nov; 102(5-1):052209. PubMed ID: 33327123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern formation on the edge of chaos: experiments with CO oxidation on a Pt(110) surface under global delayed feedback.
    Bertram M; Beta C; Pollmann M; Mikhailov AS; Rotermund HH; Ertl G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036208. PubMed ID: 12689154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern formation on the edge of chaos: mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback.
    Bertram M; Mikhailov AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036207. PubMed ID: 12689153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities.
    Bar M; Hildebrand M; Eiswirth M; Falcke M; Engel H; Neufeld M
    Chaos; 1994 Sep; 4(3):499-508. PubMed ID: 12780126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selection principle for various modes of spatially nonuniform electrochemical oscillations.
    Fukushima S; Nakanishi S; Nakato Y; Ogawa T
    J Chem Phys; 2008 Jan; 128(1):014714. PubMed ID: 18190219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.
    Sato K; Shima S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042922. PubMed ID: 26565319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic aspects of the linear stabilization of non-stationary electrochemical oscillations.
    Cabral MF; Nagao R; Sitta E; Eiswirth M; Varela H
    Phys Chem Chem Phys; 2013 Feb; 15(5):1437-42. PubMed ID: 23165655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal behavior induced by differential diffusion in Landolt systems.
    Szalai I
    J Phys Chem A; 2014 Nov; 118(45):10699-705. PubMed ID: 25340848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016210. PubMed ID: 21405763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions.
    Wickramasinghe M; Kiss IZ
    Phys Chem Chem Phys; 2014 Sep; 16(34):18360-9. PubMed ID: 25069401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arrays of stochastic oscillators: Nonlocal coupling, clustering, and wave formation.
    Escaff D; Pinto IL; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052111. PubMed ID: 25493744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchronization and oscillator death in oscillatory media with stirring.
    Neufeld Z; Kiss IZ; Zhou C; Kurths J
    Phys Rev Lett; 2003 Aug; 91(8):084101. PubMed ID: 14525240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universal relations of local order parameters for partially synchronized oscillators.
    Omel'chenko OE; Sebek M; Kiss IZ
    Phys Rev E; 2018 Jun; 97(6-1):062207. PubMed ID: 30011585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.