These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 16486053)
1. Stability of parallel flows in a microchannel after a T junction. Guillot P; Colin A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066301. PubMed ID: 16486053 [TBL] [Abstract][Full Text] [Related]
2. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Guillot P; Colin A; Ajdari A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016307. PubMed ID: 18764050 [TBL] [Abstract][Full Text] [Related]
3. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related]
4. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows. Yue J; Rebrov EV; Schouten JC Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic Array Chip with Parallel Channels for Fast Preparation of Sample Droplet Array. Kong KS; Choi JH; Kim GM J Nanosci Nanotechnol; 2016 Jun; 16(6):6294-8. PubMed ID: 27427705 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008 [TBL] [Abstract][Full Text] [Related]
7. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel. Ramírez-Miquet EE; Perchoux J; Loubière K; Tronche C; Prat L; Sotolongo-Costa O Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527178 [TBL] [Abstract][Full Text] [Related]
8. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows. Mulligan MK; Rothstein JP Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665 [TBL] [Abstract][Full Text] [Related]
9. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Okushima S; Nisisako T; Torii T; Higuchi T Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471 [TBL] [Abstract][Full Text] [Related]
10. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels. Sharma A; Tiwari V; Kumar V; Mandal TK; Bandyopadhyay D Electrophoresis; 2014 Oct; 35(20):2930-7. PubMed ID: 25044128 [TBL] [Abstract][Full Text] [Related]
11. A flow map for core/shell microdroplet formation in the co-flow Microchannel using ternary phase-field numerical model. Bariki SG; Movahedirad S Sci Rep; 2022 Dec; 12(1):22010. PubMed ID: 36539594 [TBL] [Abstract][Full Text] [Related]
12. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation. Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490 [TBL] [Abstract][Full Text] [Related]
13. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Maenaka H; Yamada M; Yasuda M; Seki M Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961 [TBL] [Abstract][Full Text] [Related]
14. A soft microchannel decreases polydispersity of droplet generation. Pang Y; Kim H; Liu Z; Stone HA Lab Chip; 2014 Oct; 14(20):4029-34. PubMed ID: 25144377 [TBL] [Abstract][Full Text] [Related]
15. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. De Menech M Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031505. PubMed ID: 16605530 [TBL] [Abstract][Full Text] [Related]
16. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Glawdel T; Elbuken C; Ren CL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016322. PubMed ID: 22400672 [TBL] [Abstract][Full Text] [Related]
17. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Shui L; van den Berg A; Eijkel JC Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661 [TBL] [Abstract][Full Text] [Related]
18. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Glawdel T; Elbuken C; Ren CL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673 [TBL] [Abstract][Full Text] [Related]
19. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids. DeLaMarre MF; Keyzer A; Shippy SA Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941 [TBL] [Abstract][Full Text] [Related]
20. Flow and clogging of capillary droplets. Cheng Y; Lonial BF; Sista S; Meer DJ; Hofert A; Weeks ER; Shattuck MD; O'Hern CS Soft Matter; 2024 Oct; 20(40):8036-8051. PubMed ID: 39291504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]