These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16486066)

  • 21. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.
    Delamater ND; Wilson DC; Kyrala GA; Seifter A; Hoffman NM; Dodd E; Singleton R; Glebov V; Stoeckl C; Li CK; Petrasso R; Frenje J
    Rev Sci Instrum; 2008 Oct; 79(10):10E526. PubMed ID: 19044507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurements of the temperature and velocity of the dense fuel layer in inertial confinement fusion experiments.
    Mannion OM; Crilly AJ; Forrest CJ; Appelbe BD; Betti R; Glebov VY; Gopalaswamy V; Knauer JP; Mohamed ZL; Stoeckl C; Chittenden JP; Regan SP
    Phys Rev E; 2022 May; 105(5-2):055205. PubMed ID: 35706215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Evidence of Kinetic Effects in Indirect-Drive Inertial Confinement Fusion Hohlraums.
    Shan LQ; Cai HB; Zhang WS; Tang Q; Zhang F; Song ZF; Bi B; Ge FJ; Chen JB; Liu DX; Wang WW; Yang ZH; Qi W; Tian C; Yuan ZQ; Zhang B; Yang L; Jiao JL; Cui B; Zhou WM; Cao LF; Zhou CT; Gu YQ; Zhang BH; Zhu SP; He XT
    Phys Rev Lett; 2018 May; 120(19):195001. PubMed ID: 29799245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel characterization of capsule x-ray drive at the National Ignition Facility.
    MacLaren SA; Schneider MB; Widmann K; Hammer JH; Yoxall BE; Moody JD; Bell PM; Benedetti LR; Bradley DK; Edwards MJ; Guymer TM; Hinkel DE; Hsing WW; Kervin ML; Meezan NB; Moore AS; Ralph JE
    Phys Rev Lett; 2014 Mar; 112(10):105003. PubMed ID: 24679301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics.
    Strozzi DJ; Bailey DS; Michel P; Divol L; Sepke SM; Kerbel GD; Thomas CA; Ralph JE; Moody JD; Schneider MB
    Phys Rev Lett; 2017 Jan; 118(2):025002. PubMed ID: 28128587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer.
    Michel P; Divol L; Williams EA; Weber S; Thomas CA; Callahan DA; Haan SW; Salmonson JD; Dixit S; Hinkel DE; Edwards MJ; Macgowan BJ; Lindl JD; Glenzer SH; Suter LJ
    Phys Rev Lett; 2009 Jan; 102(2):025004. PubMed ID: 19257284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions.
    Shah RC; Haines BM; Wysocki FJ; Benage JF; Fooks JA; Glebov V; Hakel P; Hoppe M; Igumenshchev IV; Kagan G; Mancini RC; Marshall FJ; Michel DT; Murphy TJ; Schoff ME; Silverstein K; Stoeckl C; Yaakobi B
    Phys Rev Lett; 2017 Mar; 118(13):135001. PubMed ID: 28409959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Simulations Capture the Persistent Low-Mode Asymmetries Evident in Laser-Direct-Drive Implosions on OMEGA.
    Colaïtis A; Turnbull DP; Igumenschev IV; Edgell D; Shah RC; Mannion OM; Stoeckl C; Jacob-Perkins D; Shvydky A; Janezic R; Kalb A; Cao D; Forrest CJ; Kwiatkowski J; Regan S; Theobald W; Goncharov VN; Froula DH
    Phys Rev Lett; 2022 Aug; 129(9):095001. PubMed ID: 36083671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.
    Seguin FH; Sinenian N; Rosenberg M; Zylstra A; Manuel MJ; Sio H; Waugh C; Rinderknecht HG; Johnson MG; Frenje J; Li CK; Petrasso R; Sangster TC; Roberts S
    Rev Sci Instrum; 2012 Oct; 83(10):10D908. PubMed ID: 23126911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants.
    Hu SX; Fiksel G; Goncharov VN; Skupsky S; Meyerhofer DD; Smalyuk VA
    Phys Rev Lett; 2012 May; 108(19):195003. PubMed ID: 23003051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments.
    Espinosa G; Rodríguez R; Gil JM; Suzuki-Vidal F; Lebedev SV; Ciardi A; Rubiano JG; Martel P
    Phys Rev E; 2017 Mar; 95(3-1):033201. PubMed ID: 28415177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shell mix in the compressed core of spherical implosions.
    Regan SP; Delettrez JA; Marshall FJ; Soures JM; Smalyuk VA; Yaakobi B; Epstein R; Glebov VY; Jaanimagi PA; Meyerhofer DD; Radha PB; Sangster TC; Seka W; Skupsky S; Stoeckl C; Town RP; Haynes DA; Golovkin IE; Hooper CF; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2002 Aug; 89(8):085003. PubMed ID: 12190476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions.
    Nagayama T; Bailey JE; Loisel G; Rochau GA; MacFarlane JJ; Golovkin I
    Phys Rev E; 2016 Feb; 93(2):023202. PubMed ID: 26986427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Material effects on dynamics in triple-nozzle gas-puff Z pinches.
    Narkis J; Conti F; Beg FN
    Phys Rev E; 2022 Apr; 105(4-2):045205. PubMed ID: 35590572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional implosion simulations with a kinetic particle code.
    Sagert I; Even WP; Strother TT
    Phys Rev E; 2017 May; 95(5-1):053206. PubMed ID: 28618628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microscopic properties of xenon plasmas for density and temperature regimes of laboratory astrophysics experiments on radiative shocks.
    Rodríguez R; Espinosa G; Gil JM; Stehlé C; Suzuki-Vidal F; Rubiano JG; Martel P; Mínguez E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053106. PubMed ID: 26066271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule.
    Döppner T; Thomas CA; Divol L; Dewald EL; Celliers PM; Bradley DK; Callahan DA; Dixit SN; Harte JA; Glenn SM; Haan SW; Izumi N; Kyrala GA; LaCaille G; Kline JK; Kruer WL; Ma T; MacKinnon AJ; McNaney JM; Meezan NB; Robey HF; Salmonson JD; Suter LJ; Zimmerman GB; Edwards MJ; MacGowan BJ; Kilkenny JD; Lindl JD; Van Wonterghem BM; Atherton LJ; Moses EI; Glenzer SH; Landen OL
    Phys Rev Lett; 2012 Mar; 108(13):135006. PubMed ID: 22540711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions.
    Cuneo ME; Vesey RA; Porter JL; Bennett GR; Hanson DL; Ruggles LE; Simpson WW; Idzorek GC; Stygar WA; Hammer JH; Seamen JJ; Torres JA; McGurn JS; Green RM
    Phys Rev Lett; 2002 May; 88(21):215004. PubMed ID: 12059481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of population kinetics of plasmas that are not in local thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates.
    Florido R; Rodríguez R; Gil JM; Rubiano JG; Martel P; Mínguez E; Mancini RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056402. PubMed ID: 20365078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials.
    Olson RE; Leeper RJ; Nobile A; Oertel JA
    Phys Rev Lett; 2003 Dec; 91(23):235002. PubMed ID: 14683189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.