These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 16486279)
1. Molecular dynamics of unstable motions and capillary instability in liquid nanojets. Choi YS; Kim SJ; Kim MU Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016309. PubMed ID: 16486279 [TBL] [Abstract][Full Text] [Related]
2. Charge reduction in electrosprays: slender nanojets as intermediates. Marginean I; Znamenskiy V; Vertes A J Phys Chem B; 2006 Mar; 110(12):6397-404. PubMed ID: 16553459 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels. Wu C; Xu X; Qian T J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493 [TBL] [Abstract][Full Text] [Related]
4. Rayleigh instability at small length scales. Gopan N; Sathian SP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033001. PubMed ID: 25314523 [TBL] [Abstract][Full Text] [Related]
5. Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments. Luedtke WD; Landman U; Chiu YH; Levandier DJ; Dressler RA; Sok S; Gordon MS J Phys Chem A; 2008 Oct; 112(40):9628-49. PubMed ID: 18828572 [TBL] [Abstract][Full Text] [Related]
6. Simulations of liquid nanocylinder breakup with dissipative particle dynamics. Tiwari A; Reddy H; Mukhopadhyay S; Abraham J Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016305. PubMed ID: 18764048 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of nanoscale droplets. Koplik J; Pal S; Banavar JR Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021504. PubMed ID: 11863527 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules. Tanaka KK; Tanaka H; Yamamoto T; Kawamura K J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446 [TBL] [Abstract][Full Text] [Related]
9. Fluctuating hydrodynamics and the Rayleigh-Plateau instability. Barker B; Bell JB; Garcia AL Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2306088120. PubMed ID: 37463215 [TBL] [Abstract][Full Text] [Related]
10. Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle. Umemura A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046307. PubMed ID: 21599295 [TBL] [Abstract][Full Text] [Related]
11. Silicon-based megahertz ultrasonic nozzles for production of monodisperse micrometer-sized droplets. Tsai SC; Cheng CH; Wang N; Song YL; Lee CT; Tsai CS IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1968-79. PubMed ID: 19812000 [TBL] [Abstract][Full Text] [Related]
12. Competition between collapse and breakup in nanometer-sized thin rings using molecular dynamics and continuum modeling. Nguyen TD; Fuentes-Cabrera M; Fowlkes JD; Diez JA; González AG; Kondic L; Rack PD Langmuir; 2012 Oct; 28(39):13960-7. PubMed ID: 22957759 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics study of the dewetting of copper on graphite and graphene: implications for nanoscale self-assembly. Fuentes-Cabrera M; Rhodes BH; Fowlkes JD; López-Benzanilla A; Terrones H; Simpson ML; Rack PD Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041603. PubMed ID: 21599171 [TBL] [Abstract][Full Text] [Related]
14. Equilibrium fluctuations of the Lennard-Jones cluster surface. Zhukhovitskii DI J Chem Phys; 2008 Nov; 129(19):194511. PubMed ID: 19026070 [TBL] [Abstract][Full Text] [Related]
15. A perspective on the interfacial properties of nanoscopic liquid drops. Malijevský A; Jackson G J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181 [TBL] [Abstract][Full Text] [Related]
16. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity. Umemura A; Kawanabe S; Suzuki S; Osaka J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036309. PubMed ID: 22060494 [TBL] [Abstract][Full Text] [Related]
17. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules. Tanaka KK; Kawamura K; Tanaka H; Nakazawa K J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736 [TBL] [Abstract][Full Text] [Related]
18. Molecular simulation study of cavity-generated instabilities in the superheated Lennard-Jones liquid. Torabi K; Corti DS J Chem Phys; 2010 Oct; 133(13):134505. PubMed ID: 20942544 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures. Baidakov VG; Bobrov KS J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287 [TBL] [Abstract][Full Text] [Related]
20. Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. Horsch M; Vrabec J; Hasse H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011603. PubMed ID: 18763964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]