These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Compressible sub-Alfvénic MHD turbulence in low-beta plasmas. Cho J; Lazarian A Phys Rev Lett; 2002 Jun; 88(24):245001. PubMed ID: 12059307 [TBL] [Abstract][Full Text] [Related]
4. Chromospheric alfvenic waves strong enough to power the solar wind. De Pontieu B; McIntosh SW; Carlsson M; Hansteen VH; Tarbell TD; Schrijver CJ; Title AM; Shine RA; Tsuneta S; Katsukawa Y; Ichimoto K; Suematsu Y; Shimizu T; Nagata S Science; 2007 Dec; 318(5856):1574-7. PubMed ID: 18063784 [TBL] [Abstract][Full Text] [Related]
5. Cross-scale nonlinear coupling and plasma energization by Alfvén waves. Voitenko Y; Goossens M Phys Rev Lett; 2005 Apr; 94(13):135003. PubMed ID: 15904001 [TBL] [Abstract][Full Text] [Related]
6. Swing wave-wave interaction: coupling between fast magnetosonic and Alfvén waves. Zaqarashvili TV; Roberts B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026401. PubMed ID: 12241291 [TBL] [Abstract][Full Text] [Related]
8. Energy decay laws in strongly anisotropic magnetohydrodynamic turbulence. Bigot B; Galtier S; Politano H Phys Rev Lett; 2008 Feb; 100(7):074502. PubMed ID: 18352557 [TBL] [Abstract][Full Text] [Related]
9. Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Bale SD; Kellogg PJ; Mozer FS; Horbury TS; Reme H Phys Rev Lett; 2005 Jun; 94(21):215002. PubMed ID: 16090328 [TBL] [Abstract][Full Text] [Related]
10. Coronal magnetohydrodynamic waves and oscillations: observations and quests. Aschwanden MJ Philos Trans A Math Phys Eng Sci; 2006 Feb; 364(1839):417-32; discussion 432. PubMed ID: 16414888 [TBL] [Abstract][Full Text] [Related]
11. Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data. Hadid LZ; Sahraoui F; Galtier S; Huang SY Phys Rev Lett; 2018 Feb; 120(5):055102. PubMed ID: 29481187 [TBL] [Abstract][Full Text] [Related]
12. High-frequency torsional Alfvén waves as an energy source for coronal heating. Srivastava AK; Shetye J; Murawski K; Doyle JG; Stangalini M; Scullion E; Ray T; Wójcik DP; Dwivedi BN Sci Rep; 2017 Mar; 7():43147. PubMed ID: 28256538 [TBL] [Abstract][Full Text] [Related]
13. Magnetohydrodynamic waves in coronal polar plumes. Nakariakov VM Philos Trans A Math Phys Eng Sci; 2006 Feb; 364(1839):473-83. PubMed ID: 16414892 [TBL] [Abstract][Full Text] [Related]
14. A dynamical model of plasma turbulence in the solar wind. Howes GG Philos Trans A Math Phys Eng Sci; 2015 May; 373(2041):. PubMed ID: 25848075 [TBL] [Abstract][Full Text] [Related]
16. Evidence for wave heating in the solar corona. Hahn M Ann N Y Acad Sci; 2013 Jul; 1293():45-53. PubMed ID: 23676178 [TBL] [Abstract][Full Text] [Related]
17. Nonlocal contributions to the turbulent cascade in magnetohydrodynamic plasmas. Friedrich J; Wilbert M; Marino R Phys Rev E; 2024 Apr; 109(4-2):045208. PubMed ID: 38755856 [TBL] [Abstract][Full Text] [Related]
18. Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Carbone V; Marino R; Sorriso-Valvo L; Noullez A; Bruno R Phys Rev Lett; 2009 Aug; 103(6):061102. PubMed ID: 19792547 [TBL] [Abstract][Full Text] [Related]