These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16486384)

  • 1. Nonlinear transport and heat dissipation in metallic carbon nanotubes.
    Kuroda MA; Cangellaris A; Leburton JP
    Phys Rev Lett; 2005 Dec; 95(26):266803. PubMed ID: 16486384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths.
    Sääskilahti K; Oksanen J; Tulkki J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012128. PubMed ID: 23944435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic phonon thermal transport in multiwalled carbon nanotubes.
    Chiu HY; Deshpande VV; Postma HW; Lau CN; Mikó C; Forró L; Bockrath M
    Phys Rev Lett; 2005 Nov; 95(22):226101. PubMed ID: 16384238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes.
    Chen YF; Fuhrer MS
    Phys Rev Lett; 2005 Dec; 95(23):236803. PubMed ID: 16384328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport and hot phonons in carbon nanotubes.
    Lazzeri M; Piscanec S; Mauri F; Ferrari AC; Robertson J
    Phys Rev Lett; 2005 Dec; 95(23):236802. PubMed ID: 16384327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-field quasiballistic transport in short carbon nanotubes.
    Javey A; Guo J; Paulsson M; Wang Q; Mann D; Lundstrom M; Dai H
    Phys Rev Lett; 2004 Mar; 92(10):106804. PubMed ID: 15089227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-field electron transport in semiconducting zigzag carbon nanotubes.
    Thiagarajan K; Lindefelt U
    Nanotechnology; 2012 Jul; 23(26):265703. PubMed ID: 22699562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-field electrical transport in single-wall carbon nanotubes.
    Yao Z; Kane CL; Dekker C
    Phys Rev Lett; 2000 Mar; 84(13):2941-4. PubMed ID: 11018981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of short channel ballistic carbon nanotube transistors with ohmic contacts.
    Léonard F; Stewart DA
    Nanotechnology; 2006 Sep; 17(18):4699-705. PubMed ID: 21727600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of charge and heat transport in a nano-junction in the out-of-equilibrium cotunneling regime.
    Chtchelkatchev NM; Glatz A; Beloborodov IS
    J Phys Condens Matter; 2013 May; 25(18):185301. PubMed ID: 23571317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-field transport and thermal reliability of sorted carbon nanotube network devices.
    Behnam A; Sangwan VK; Zhong X; Lian F; Estrada D; Jariwala D; Hoag AJ; Lauhon LJ; Marks TJ; Hersam MC; Pop E
    ACS Nano; 2013 Jan; 7(1):482-90. PubMed ID: 23259715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and Optical Properties of Single Wall Carbon Nanotubes.
    Saito R; Nugraha ART; Hasdeo EH; Hung NT; Izumida W
    Top Curr Chem (Cham); 2017 Feb; 375(1):7. PubMed ID: 28032245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-Dependent Heat Dissipation of Carbon Nanotube Electric Currents.
    Voskanian N; Olsson E; Cumings J
    Sci Rep; 2019 Jul; 9(1):10785. PubMed ID: 31346190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion.
    Cronin SB; Yin Y; Walsh A; Capaz RB; Stolyarov A; Tangney P; Cohen ML; Louie SG; Swan AK; Unlü MS; Goldberg BB; Tinkham M
    Phys Rev Lett; 2006 Mar; 96(12):127403. PubMed ID: 16605957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-phonon interaction and transport in semiconducting carbon nanotubes.
    Perebeinos V; Tersoff J; Avouris P
    Phys Rev Lett; 2005 Mar; 94(8):086802. PubMed ID: 15783915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.