These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16486432)

  • 1. Breakdown of hydrodynamics in a simple one-dimensional fluid.
    Hurtado PI
    Phys Rev Lett; 2006 Jan; 96(1):010601. PubMed ID: 16486432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong shock waves and nonequilibrium response in a one-dimensional gas: a Boltzmann equation approach.
    Hurtado PI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041101. PubMed ID: 16383356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized hydrodynamic theory of shock waves in rigid diatomic gases.
    Al-Ghoul M; Eu BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046303. PubMed ID: 11690142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics.
    Híjar H; Sutmann G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046708. PubMed ID: 21599335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases.
    Zhao H; Wang WG
    Phys Rev E; 2018 Jan; 97(1-1):010103. PubMed ID: 29448438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method.
    Lin C; Su X; Zhang Y
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33321966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube.
    Qiu R; Zhou T; Bao Y; Zhou K; Che H; You Y
    Phys Rev E; 2021 May; 103(5-1):053113. PubMed ID: 34134242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Black Hole Scrambling from Hydrodynamics.
    Grozdanov S; Schalm K; Scopelliti V
    Phys Rev Lett; 2018 Jun; 120(23):231601. PubMed ID: 29932684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuating hydrodynamics in a vertically vibrated granular fluid with gravity.
    Costantini G; Puglisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031307. PubMed ID: 22060361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale hydrodynamics near solids.
    Camargo D; de la Torre JA; Duque-Zumajo D; Español P; Delgado-Buscalioni R; Chejne F
    J Chem Phys; 2018 Feb; 148(6):064107. PubMed ID: 29448792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A; Marenduzzo D; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality of scaling and multiscaling in turbulent symmetric binary fluids.
    Ray SS; Basu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036316. PubMed ID: 22060501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Alfvén Wave in Anomalous Hydrodynamics.
    Yamamoto N
    Phys Rev Lett; 2015 Oct; 115(14):141601. PubMed ID: 26551804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic derivation of the hydrodynamic equations for capillary fluids.
    De Martino S; Falanga M; Lauro G; Tzenov SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):067301. PubMed ID: 15697560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indication of multiscaling in the volatility return intervals of stock markets.
    Wang F; Yamasaki K; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016109. PubMed ID: 18351917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of critical Casimir and dispersion forces.
    Dantchev D; Schlesener F; Dietrich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011121. PubMed ID: 17677424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shock wave structure in a strongly nonlinear lattice with viscous dissipation.
    Herbold EB; Nesterenko VF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021304. PubMed ID: 17358334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batch electrophoretic cells with Eyring fluids: analysis of the hydrodynamics.
    Bosse MA; Araya H; Troncoso SA; Arce PE
    Electrophoresis; 2002 Jul; 23(14):2149-56. PubMed ID: 12210218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapman-Enskog expansion about nonequilibrium states with application to the sheared granular fluid.
    Lutsko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021302. PubMed ID: 16605330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.
    Hiejima T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053017. PubMed ID: 25353890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.