These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16486602)

  • 1. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase.
    Batzill M; Morales EH; Diebold U
    Phys Rev Lett; 2006 Jan; 96(2):026103. PubMed ID: 16486602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N doping of TiO2(110): photoemission and density-functional studies.
    Nambu A; Graciani J; Rodriguez JA; Wu Q; Fujita E; Sanz JF
    J Chem Phys; 2006 Sep; 125(9):094706. PubMed ID: 16965104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structures of anatase (TiO2)1-x(TaON)x solid solutions: a first-principles study.
    Dang W; Chen H; Umezawa N; Zhang J
    Phys Chem Chem Phys; 2015 Jul; 17(27):17980-8. PubMed ID: 26096698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of N-doped TiO2 rutile crystals.
    Yang K; Dai Y; Huang B; Han S
    J Phys Chem B; 2006 Nov; 110(47):24011-4. PubMed ID: 17125371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2.
    Navas J; Sánchez-Coronilla A; Aguilar T; Hernández NC; de los Santos DM; Sánchez-Márquez J; Zorrilla D; Fernández-Lorenzo C; Alcántara R; Martín-Calleja J
    Phys Chem Chem Phys; 2014 Feb; 16(8):3835-45. PubMed ID: 24434807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge compensation in trivalent cation doped bulk rutile TiO2.
    Iwaszuk A; Nolan M
    J Phys Condens Matter; 2011 Aug; 23(33):334207. PubMed ID: 21813953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and structural properties of highly aluminum ion doped TiO(2) nanoparticles: a combined experimental and theoretical study.
    de los Santos DM; Aguilar T; Sánchez-Coronilla A; Navas J; Cruz Hernández N; Alcántara R; Fernández-Lorenzo C; Martín-Calleja J
    Chemphyschem; 2014 Aug; 15(11):2267-80. PubMed ID: 24840394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts.
    Wang J; Tafen de N; Lewis JP; Hong Z; Manivannan A; Zhi M; Li M; Wu N
    J Am Chem Soc; 2009 Sep; 131(34):12290-7. PubMed ID: 19705915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties.
    Wang XH; Li JG; Kamiyama H; Katada M; Ohashi N; Moriyoshi Y; Ishigaki T
    J Am Chem Soc; 2005 Aug; 127(31):10982-90. PubMed ID: 16076205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.
    Wang F; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23941-8. PubMed ID: 26444102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations.
    Di Valentin C; Pacchioni G; Selloni A; Livraghi S; Giamello E
    J Phys Chem B; 2005 Jun; 109(23):11414-9. PubMed ID: 16852395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides.
    Kamisaka H; Adachi T; Yamashita K
    J Chem Phys; 2005 Aug; 123(8):084704. PubMed ID: 16164318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic basis of visible region activity in high area Sn-doped rutile TiO2 photocatalysts.
    Oropeza FE; Davies B; Palgrave RG; Egdell RG
    Phys Chem Chem Phys; 2011 May; 13(17):7882-91. PubMed ID: 21445426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab Initio Study of the Atomic Level Structure of the Rutile TiO
    Gutiérrez Moreno JJ; Nolan M
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):38089-38100. PubMed ID: 28937740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.
    Zhang J; Zhou P; Liu J; Yu J
    Phys Chem Chem Phys; 2014 Oct; 16(38):20382-6. PubMed ID: 25144471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins of electronic band gap reduction in Cr/N codoped TiO2.
    Parks Cheney C; Vilmercati P; Martin EW; Chiodi M; Gavioli L; Regmi M; Eres G; Callcott TA; Weitering HH; Mannella N
    Phys Rev Lett; 2014 Jan; 112(3):036404. PubMed ID: 24484152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110).
    Iwaszuk A; Nolan M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4963-73. PubMed ID: 21331430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of anatase TiO
    González-Torres JC; Cipriano LA; Poulain E; Domínguez-Soria V; García-Cruz R; Olvera-Neria O
    J Mol Model; 2018 Sep; 24(10):276. PubMed ID: 30194488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermo-selective Tm(x)Ti(1-x)O(2-x/2) nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application.
    Navas J; Sánchez-Coronilla A; Aguilar T; De los Santos DM; Hernández NC; Alcántara R; Fernández-Lorenzo C; Martín-Calleja J
    Nanoscale; 2014 Nov; 6(21):12740-57. PubMed ID: 25219888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.