These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16486740)

  • 1. Chaos in atomic force microscopy.
    Hu S; Raman A
    Phys Rev Lett; 2006 Jan; 96(3):036107. PubMed ID: 16486740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects.
    Zhang WM; Meng G; Zhou JB; Chen JY
    Sensors (Basel); 2009; 9(5):3854-74. PubMed ID: 22412340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaos in dynamic atomic force microscopy.
    Jamitzky F; Stark M; Bunk W; Heckl WM; Stark RW
    Nanotechnology; 2006 Apr; 17(7):S213-20. PubMed ID: 21727417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of Modal Decomposition for Tapping Atomic Force Microscopy Microcantilevers in Liquid Environment.
    Kim IK; Lee SI
    J Nanosci Nanotechnol; 2016 May; 16(5):4362-9. PubMed ID: 27483758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy.
    Hu S; Raman A
    Nanotechnology; 2008 Sep; 19(37):375704. PubMed ID: 21832558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.
    Legleiter J
    Nanotechnology; 2009 Jun; 20(24):245703. PubMed ID: 19471079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces.
    Eslami S; Jalili N
    Ultramicroscopy; 2012 Jun; 117():31-45. PubMed ID: 22659234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the optical lever sensitivity of microcantilevers for dynamic atomic force microscopy via integrated low frequency paddles.
    Shaik NH; Reifenberger RG; Raman A
    Nanotechnology; 2016 May; 27(19):195502. PubMed ID: 27040811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tapping mode imaging and measurements with an inverted atomic force microscope.
    Chan SS; Green JB
    Langmuir; 2006 Jul; 22(15):6701-6. PubMed ID: 16831016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex dynamics of carbon nanotube probe tips.
    Lee SI; Howell SW; Raman A; Reifenberger R; Nguyen CV; Meyyappan M
    Ultramicroscopy; 2005 May; 103(2):95-102. PubMed ID: 15774270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative atomic force microscopy with carbon monoxide terminated tips.
    Sun Z; Boneschanscher MP; Swart I; Vanmaekelbergh D; Liljeroth P
    Phys Rev Lett; 2011 Jan; 106(4):046104. PubMed ID: 21405341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems.
    Santos S; Barcons V; Font J; Thomson NH
    Nanotechnology; 2010 Jun; 21(22):225710. PubMed ID: 20453275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-range length metrology by dual-imaging-unit atomic force microscope based on porous alumina.
    Zhang D; Zhang H; Lin X
    Microsc Res Tech; 2004 Jun; 64(3):223-7. PubMed ID: 15452889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.
    Smirnov W; Kriele A; Hoffmann R; Sillero E; Hees J; Williams OA; Yang N; Kranz C; Nebel CE
    Anal Chem; 2011 Jun; 83(12):4936-41. PubMed ID: 21534601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittency in amplitude modulated dynamic atomic force microscopy.
    Jamitzky F; Stark RW
    Ultramicroscopy; 2010 May; 110(6):618-21. PubMed ID: 20223591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude Dependence of Resonance Frequency and its Consequences for Scanning Probe Microscopy.
    Dagdeviren OE; Miyahara Y; Mascaro A; Enright T; Grütter P
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tip characterization method using multi-feature characterizer for CD-AFM.
    Orji NG; Itoh H; Wang C; Dixson RG; Walecki PS; Schmidt SW; Irmer B
    Ultramicroscopy; 2016 Mar; 162():25-34. PubMed ID: 26720439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms.
    Gao DZ; Grenz J; Watkins MB; Federici Canova F; Schwarz A; Wiesendanger R; Shluger AL
    ACS Nano; 2014 May; 8(5):5339-51. PubMed ID: 24787716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.