These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16486826)

  • 1. Medium-term prediction of chaos.
    Strelioff CC; Hübler AW
    Phys Rev Lett; 2006 Feb; 96(4):044101. PubMed ID: 16486826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric and dynamic perspectives on phase-coherent and noncoherent chaos.
    Zou Y; Donner RV; Kurths J
    Chaos; 2012 Mar; 22(1):013115. PubMed ID: 22462991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chaotic nature of temper in humans: a long short-term memory recurrent neural network model.
    Zifan A; Gharibzadeh S
    Med Hypotheses; 2006; 67(3):658-61. PubMed ID: 16624500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Required criteria for recognizing new types of chaos: application to the "cord" attractor.
    Letellier C; Aguirre LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036204. PubMed ID: 22587158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems.
    Rempel EL; Chian AC
    Phys Rev Lett; 2007 Jan; 98(1):014101. PubMed ID: 17358476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistability and the control of complexity.
    Feudel U; Grebogi C
    Chaos; 1997 Dec; 7(4):597-604. PubMed ID: 12779685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycles homoclinic to chaotic sets; robustness and resonance.
    Ashwin P
    Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting chaos in heavy-noise environments.
    Tung WW; Gao J; Hu J; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046210. PubMed ID: 21599273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow.
    Narayanan S; Gunaratne GH; Hussain F
    Chaos; 2013 Sep; 23(3):033133. PubMed ID: 24089969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending anticipation horizon of chaos synchronization schemes with time-delay coupling.
    Pyragas K; Pyragienė T
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):305-17. PubMed ID: 20008403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaos in the pulse spacing of passive Q-switched all-solid-state lasers.
    Kovalsky M; Hnilo A
    Opt Lett; 2010 Oct; 35(20):3498-500. PubMed ID: 20967112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to the edge of chaos in the self-adjusting logistic map.
    Melby P; Kaidel J; Weber N; Hübler A
    Phys Rev Lett; 2000 Jun; 84(26 Pt 1):5991-3. PubMed ID: 10991106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos and unpredictability in evolutionary dynamics in discrete time.
    Vilone D; Robledo A; Sánchez A
    Phys Rev Lett; 2011 Jul; 107(3):038101. PubMed ID: 21838406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.
    Fu Y; Li X; Li Y; Yang W; Song H
    Chaos; 2013 Mar; 23(1):013111. PubMed ID: 23556948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bitwise efficiency in chaotic models.
    Jeffress S; Düben P; Palmer T
    Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170144. PubMed ID: 28989303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling design for a long-term anticipating synchronization of chaos.
    Pyragas K; Pyragiene T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046217. PubMed ID: 18999518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soliton as strange attractor: nonlinear synchronization and chaos.
    Soto-Crespo JM; Akhmediev N
    Phys Rev Lett; 2005 Jul; 95(2):024101. PubMed ID: 16090684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators.
    He Z; Sun Y; Zhan M
    Chaos; 2013 Dec; 23(4):043139. PubMed ID: 24387578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of multistability in the transition to chaotic phase synchronization.
    Postnov DE; Vadivasova TE; Sosnovtseva OV; Balanov AG; Anishchenko VS; Mosekilde E
    Chaos; 1999 Mar; 9(1):227-232. PubMed ID: 12779818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.