These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Terman A; Gustafsson B; Brunk UT Chem Biol Interact; 2006 Oct; 163(1-2):29-37. PubMed ID: 16737690 [TBL] [Abstract][Full Text] [Related]
4. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Brunk UT; Terman A Eur J Biochem; 2002 Apr; 269(8):1996-2002. PubMed ID: 11985575 [TBL] [Abstract][Full Text] [Related]
5. Catabolic insufficiency and aging. Terman A Ann N Y Acad Sci; 2006 May; 1067():27-36. PubMed ID: 16803967 [TBL] [Abstract][Full Text] [Related]
6. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Terman A; Dalen H; Eaton JW; Neuzil J; Brunk UT Ann N Y Acad Sci; 2004 Jun; 1019():70-7. PubMed ID: 15246997 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial damage and intralysosomal degradation in cellular aging. Terman A; Gustafsson B; Brunk UT Mol Aspects Med; 2006; 27(5-6):471-82. PubMed ID: 16973208 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Terman A; Kurz T; Navratil M; Arriaga EA; Brunk UT Antioxid Redox Signal; 2010 Apr; 12(4):503-35. PubMed ID: 19650712 [TBL] [Abstract][Full Text] [Related]
9. Aging as a catabolic malfunction. Terman A; Brunk UT Int J Biochem Cell Biol; 2004 Dec; 36(12):2365-75. PubMed ID: 15325578 [TBL] [Abstract][Full Text] [Related]
11. The aging myocardium: roles of mitochondrial damage and lysosomal degradation. Terman A; Brunk UT Heart Lung Circ; 2005 Jun; 14(2):107-14. PubMed ID: 16352265 [TBL] [Abstract][Full Text] [Related]
12. The involvement of lysosomes in myocardial aging and disease. Terman A; Kurz T; Gustafsson B; Brunk UT Curr Cardiol Rev; 2008 May; 4(2):107-15. PubMed ID: 19936285 [TBL] [Abstract][Full Text] [Related]
13. Garbage catastrophe theory of aging: imperfect removal of oxidative damage? Terman A Redox Rep; 2001; 6(1):15-26. PubMed ID: 11333111 [TBL] [Abstract][Full Text] [Related]
14. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Kurz T; Terman A; Brunk UT Arch Biochem Biophys; 2007 Jun; 462(2):220-30. PubMed ID: 17306211 [TBL] [Abstract][Full Text] [Related]
15. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Brunk UT; Terman A Free Radic Biol Med; 2002 Sep; 33(5):611-9. PubMed ID: 12208347 [TBL] [Abstract][Full Text] [Related]
16. Redox activity within the lysosomal compartment: implications for aging and apoptosis. Kurz T; Eaton JW; Brunk UT Antioxid Redox Signal; 2010 Aug; 13(4):511-23. PubMed ID: 20039839 [TBL] [Abstract][Full Text] [Related]
17. Lipofuscin: mechanisms of formation and increase with age. Terman A; Brunk UT APMIS; 1998 Feb; 106(2):265-76. PubMed ID: 9531959 [TBL] [Abstract][Full Text] [Related]
18. Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Park JT; Lee YS; Cho KA; Park SC Ageing Res Rev; 2018 Nov; 47():176-182. PubMed ID: 30142381 [TBL] [Abstract][Full Text] [Related]
20. Aging: central role for autophagy and the lysosomal degradative system. Rajawat YS; Hilioti Z; Bossis I Ageing Res Rev; 2009 Jul; 8(3):199-213. PubMed ID: 19427410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]