BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

678 related articles for article (PubMed ID: 16487535)

  • 21. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An in-depth investigation of supercritical fluid chromatography retention mechanisms by evaluation of a series of specially designed alkylsiloxane-bonded stationary phases based on linear solvation energy relationship.
    Jiang D; Wu D; Zhou G; Dai Y; Yang J; Jin Y; Fu Q; Ke Y; Liang X
    J Chromatogr A; 2023 Feb; 1690():463781. PubMed ID: 36638687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retention mechanisms in micellar liquid chromatography.
    Ruiz-Angel MJ; Carda-Broch S; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2009 Mar; 1216(10):1798-814. PubMed ID: 18838142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterisation of stationary phases in supercritical fluid chromatography with the solvation parameter model V. Elaboration of a reduced set of test solutes for rapid evaluation.
    West C; Lesellier E
    J Chromatogr A; 2007 Oct; 1169(1-2):205-19. PubMed ID: 17900598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Description and comparison of chromatographic tests and chemometric methods for packed column classification.
    Lesellier E; West C
    J Chromatogr A; 2007 Jul; 1158(1-2):329-60. PubMed ID: 17467721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of hydrocarbon, fluorocarbon, and aromatic bonded RP-HPLC stationary phases by linear solvation energy relationships.
    Reta M; Carr PW; Sadek PC; Rutan SC
    Anal Chem; 1999 Aug; 71(16):3484-96. PubMed ID: 10464478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the retention mechanism of neutral organic compounds on polar chemically bonded stationary phases in reversed-phase liquid chromatography.
    Ali Z; Poole CF
    J Chromatogr A; 2004 Oct; 1052(1-2):199-204. PubMed ID: 15527138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography.
    Poole CF
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Aug; 1092():207-219. PubMed ID: 29908470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.
    Rafferty JL; Siepmann JI; Schure MR
    Anal Chem; 2008 Aug; 80(16):6214-21. PubMed ID: 18642848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of calixarene-bonded stationary phases.
    Schneider C; Menyes U; Jira T
    J Sep Sci; 2010 Oct; 33(19):2930-42. PubMed ID: 20603840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of different reversed phase systems in liquid adsorption chromatography of polymer homologous series.
    Trathnigg B; Jamelnik O
    J Chromatogr A; 2007 Mar; 1146(1):78-84. PubMed ID: 17316659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-function relationships in high-density docosylsilane bonded stationary phases by Raman spectroscopy and comparison to octadecylsilane bonded stationary phases: effects of common solvents.
    Liao Z; Pemberton JE
    Anal Chem; 2008 Apr; 80(8):2911-20. PubMed ID: 18336011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Ascentis RP-Amide column: Lipophilicity measurement and linear solvation energy relationships.
    Benhaim D; Grushka E
    J Chromatogr A; 2010 Jan; 1217(1):65-74. PubMed ID: 19939395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophilic interaction liquid chromatography columns classification by effect of solvation and chemometric methods.
    Noga S; Bocian S; Buszewski B
    J Chromatogr A; 2013 Feb; 1278():89-97. PubMed ID: 23351397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chromatographic estimate of the degree of surface heterogeneity of RPLC packing materials. III. Endcapped amido-embedded reversed phase.
    Gritti F; Guiochon G
    J Chromatogr A; 2006 Jan; 1103(1):69-82. PubMed ID: 16359691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of temperature on gradient reequilibration in reversed-phase liquid chromatography.
    Coym JW; Roe BW
    J Chromatogr A; 2007 Jun; 1154(1-2):182-8. PubMed ID: 17412352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of solvent adsorption on chemically bonded stationary phases by microcalorimetry and liquid chromatography.
    Buszewski B; Bocian S; Rychlicki G; Vajda P; Felinger A
    J Colloid Interface Sci; 2010 Sep; 349(2):620-5. PubMed ID: 20584530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retention mechanisms in subcritical water reversed-phase chromatography.
    Allmon SD; Dorsey JG
    J Chromatogr A; 2009 Jun; 1216(26):5106-11. PubMed ID: 19447396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.
    Torres-Lapasió JR; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1166(1-2):85-96. PubMed ID: 17720177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-function relationships in high-density docosylsilane bonded stationary phases by Raman spectroscopy and comparison to octadecylsilane bonded stationary phases: effects of aromatic compounds.
    Liao Z; Pemberton JE
    J Chromatogr A; 2008 Jun; 1193(1-2):60-9. PubMed ID: 18448107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.