BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 16487566)

  • 1. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors.
    Neculita CM; Yim GJ; Lee G; Ji SW; Jung JW; Park HS; Song H
    Chemosphere; 2011 Mar; 83(1):76-82. PubMed ID: 21262523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.
    Gibert O; de Pablo J; Luis Cortina J; Ayora C
    Water Res; 2004 Nov; 38(19):4186-96. PubMed ID: 15491666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs.
    Neculita CM; Zagury GJ; Bussière B
    J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.
    Song H; Yim GJ; Ji SW; Neculita CM; Hwang T
    J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors.
    Cruz Viggi C; Pagnanelli F; Cibati A; Uccelletti D; Palleschi C; Toro L
    Water Res; 2010 Jan; 44(1):151-8. PubMed ID: 19804893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of cellulose waste versus organic waste as substrate in a sulfate reducing bioreactor.
    Choudhary RP; Sheoran AS
    Bioresour Technol; 2011 Mar; 102(6):4319-24. PubMed ID: 20926292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.
    Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM
    Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments.
    Lindsay MB; Blowes DW; Ptacek CJ; Condon PD
    J Contam Hydrol; 2011 Jul; 125(1-4):26-38. PubMed ID: 21592616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.
    Hulshof AH; Blowes DW; Gould WD
    Water Res; 2006 May; 40(9):1816-26. PubMed ID: 16626781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].
    Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Bioresour Technol; 2009 Jan; 100(2):615-21. PubMed ID: 18760595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites.
    Ríos CA; Williams CD; Roberts CL
    J Hazard Mater; 2008 Aug; 156(1-3):23-35. PubMed ID: 18221835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase.
    Wengel M; Kothe E; Schmidt CM; Heide K; Gleixner G
    Sci Total Environ; 2006 Aug; 367(1):383-93. PubMed ID: 16483638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.