These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 16487566)

  • 21. Chemical characterisation of organic electron donors for sulfate reduction for potential use in acid mine drainage treatment.
    Coetser SE; Pulles W; Heath RG; Cloete TE
    Biodegradation; 2006 Mar; 17(2):169-79. PubMed ID: 16447029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.
    Jong T; Parry DL
    Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.
    Kijjanapanich P; Pakdeerattanamint K; Lens PN; Annachhatre AP
    Environ Technol; 2012 Dec; 33(22-24):2635-44. PubMed ID: 23437664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite.
    Hwang T; Neculita CM; Han JI
    J Environ Qual; 2012; 41(6):1857-64. PubMed ID: 23128742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    J Hazard Mater; 2009 Jan; 161(2-3):1157-65. PubMed ID: 18541372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiencies of available organic mixtures for the biological treatment of highly acidic-sulphate rich drainage of the San Jose mine, Bolivia.
    Oporto C; Baya G; Vandecasteele C
    Environ Technol; 2021 Mar; 42(8):1283-1291. PubMed ID: 31496432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stable isotope fractionation related to technically enhanced bacterial sulphate degradation in lignite mining sediments.
    Knöller K; Jeschke C; Simon A; Gast M; Hoth N
    Isotopes Environ Health Stud; 2012; 48(1):76-88. PubMed ID: 22092249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using fluorescence-based microplate assay to assess DOM-metal binding in reactive materials for treatment of acid mine drainage.
    Neculita CM; Dudal Y; Zagury GJ
    J Environ Sci (China); 2011; 23(6):891-6. PubMed ID: 22066210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on removal of metal ions and sulphate reduction using rice husk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Chemosphere; 2006 Feb; 62(5):699-708. PubMed ID: 16002121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community.
    Wang H; Zhang M; Dong P; Xue J; Liu L
    Chemosphere; 2024 Feb; 349():140789. PubMed ID: 38013025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials.
    Mirjafari P; Baldwin SA
    Water Sci Technol; 2015; 72(6):875-81. PubMed ID: 26360746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum.
    Castillo J; Pérez-López R; Sarmiento AM; Nieto JM
    Sci Total Environ; 2012 Nov; 439():106-13. PubMed ID: 23063915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance.
    Molinuevo B; García MC; Karakashev D; Angelidaki I
    Bioresour Technol; 2009 Apr; 100(7):2171-5. PubMed ID: 19097886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria.
    Hwang SK; Jho EH
    Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers.
    Pagnanelli F; Viggi CC; Mainelli S; Toro L
    J Hazard Mater; 2009 Oct; 170(2-3):998-1005. PubMed ID: 19505754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of layered and mixed passive treatment systems for acid mine drainage.
    Jeen SW; Mattson B
    Environ Technol; 2016 Nov; 37(22):2835-51. PubMed ID: 26998668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological treatment of acidic coal refuse using sulphate-reducing bacteria with chicken manure as carbon source.
    Zhang M; Wang H
    Environ Technol; 2014; 35(21-24):2947-55. PubMed ID: 25189842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers.
    Satyawali Y; Seuntjens P; Van Roy S; Joris I; Vangeel S; Dejonghe W; Vanbroekhoven K
    J Contam Hydrol; 2011 Apr; 123(3-4):83-93. PubMed ID: 21237527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.