BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16487567)

  • 1. Assessment of pesticide residues in army cutworm moths (Euxoa auxiliaris) from the Greater Yellowstone Ecosystem and their potential consequences to foraging grizzly bears (Ursus arctos horribilis).
    Robison HL; Schwartz CC; Petty JD; Brussard PF
    Chemosphere; 2006 Sep; 64(10):1704-12. PubMed ID: 16487567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Stable Isotopes to Determine Natal Origin and Feeding Habits of the Army Cutworm Moth, Euxoa auxiliaris (Lepidoptera: Noctuidae).
    Dittemore CM; Tyers DB; Weaver DK; Nunlist EA; Sowell BF; Peterson E; Peterson RKD
    Environ Entomol; 2023 Apr; 52(2):230-242. PubMed ID: 36801934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.
    McGowan RT; Robbins CT; Alldredge JR; Newberry RC
    Zoo Biol; 2010; 29(4):484-502. PubMed ID: 19816856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demographic connectivity for ursid populations at wildlife crossing structures in Banff National Park.
    Sawaya MA; Clevenger AP; Kalinowski ST
    Conserv Biol; 2013 Aug; 27(4):721-30. PubMed ID: 23758532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic cascades from wolves to grizzly bears in Yellowstone.
    Ripple WJ; Beschta RL; Fortin JK; Robbins CT
    J Anim Ecol; 2014 Jan; 83(1):223-33. PubMed ID: 24033136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation study on 660 pesticide residues in animal tissues by gel permeation chromatography cleanup/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry.
    Pang GF; Cao YZ; Zhang JJ; Fan CL; Liu YM; Li XM; Jia GQ; Li ZY; Shi YQ; Wu YP; Guo TT
    J Chromatogr A; 2006 Aug; 1125(1):1-30. PubMed ID: 16782108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos) in a national park.
    Murray MH; Fassina S; Hopkins JB; Whittington J; St Clair CC
    PLoS One; 2017; 12(5):e0175658. PubMed ID: 28542218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.
    Schwab C; Cristescu B; Boyce MS; Stenhouse GB; Gänzle M
    Can J Microbiol; 2009 Dec; 55(12):1335-46. PubMed ID: 20029525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First report of Taenia arctos (Cestoda: Taeniidae) from grizzly (Ursus arctos horribilis) and black bears (Ursus americanus) in North America.
    Catalano S; Lejeune M; Verocai GG; Duignan PJ
    Parasitol Int; 2014 Apr; 63(2):389-91. PubMed ID: 24382413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.
    Chow BA; Hamilton J; Alsop D; Cattet MR; Stenhouse G; Vijayan MM
    Gen Comp Endocrinol; 2010 Jun; 167(2):317-25. PubMed ID: 20347821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A retrospective study of dental conditions of captive brown bears (Ursus arctos spp.) compared with free-ranging Alaskan grizzlies (Ursus arctos horribilis).
    Wenker CJ; Stich H; Müller M; Lussi A
    J Zoo Wildl Med; 1999 Jun; 30(2):208-21. PubMed ID: 10484135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of tandem-in-space and tandem-in-time mass spectrometry in gas chromatography determination of pesticides: application to simple and complex food samples.
    Garrido Frenich A; Plaza-Bolaños P; Martínez Vidal JL
    J Chromatogr A; 2008 Sep; 1203(2):229-38. PubMed ID: 18667209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?
    Barber-Meyer SM
    J Anim Ecol; 2015 May; 84(3):647-651. PubMed ID: 25732302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.
    Bjornlie DD; Van Manen FT; Ebinger MR; Haroldson MA; Thompson DJ; Costello CM
    PLoS One; 2014; 9(2):e88160. PubMed ID: 24520354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.
    Hopkins JB; Ferguson JM; Tyers DB; Kurle CM
    PLoS One; 2017; 12(5):e0174903. PubMed ID: 28493929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography-triple quadrupole tandem mass spectrometry.
    Walorczyk S
    J Chromatogr A; 2007 Sep; 1165(1-2):200-12. PubMed ID: 17707387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial patterns of breeding success of grizzly bears derived from hierarchical multistate models.
    Fisher JT; Wheatley M; Mackenzie D
    Conserv Biol; 2014 Oct; 28(5):1249-59. PubMed ID: 24762089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hibernation-associated changes in persistent organic pollutant (POP) levels and patterns in British Columbia grizzly bears (ursus arctos horribilis).
    Christensen JR; MacDuffee M; Yunker MB; Ross PS
    Environ Sci Technol; 2007 Mar; 41(6):1834-40. PubMed ID: 17410772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exertional myopathy in a grizzly bear (Ursus arctos) captured by leghold snare.
    Cattet M; Stenhouse G; Bollinger T
    J Wildl Dis; 2008 Oct; 44(4):973-8. PubMed ID: 18957653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of organochlorine pesticides in sediment using graphitized carbon black solid-phase extraction and gas chromatography/mass spectrometry.
    Kim MS; Kang TW; Pyo H; Yoon J; Choi K; Hong J
    J Chromatogr A; 2008 Oct; 1208(1-2):25-33. PubMed ID: 18789449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.