These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16487954)

  • 1. Automated detection of masses in mammograms by local adaptive thresholding.
    Kom G; Tiedeu A; Kom M
    Comput Biol Med; 2007 Jan; 37(1):37-48. PubMed ID: 16487954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection.
    Rojas Domínguez A; Nandi AK
    Comput Med Imaging Graph; 2008 Jun; 32(4):304-15. PubMed ID: 18358699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A concentric morphology model for the detection of masses in mammography.
    Eltonsy NH; Tourassi GD; Elmaghraby AS
    IEEE Trans Med Imaging; 2007 Jun; 26(6):880-9. PubMed ID: 17679338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization.
    Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of a novel mass detection algorithm in mammograms.
    Kozegar E; Soryani M; Minaei B; Domingues I
    J Cancer Res Ther; 2013; 9(4):592-600. PubMed ID: 24518702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. False-positive reduction technique for detection of masses on digital mammograms: global and local multiresolution texture analysis.
    Wei D; Chan HP; Petrick N; Sahiner B; Helvie MA; Adler DD; Goodsitt MM
    Med Phys; 1997 Jun; 24(6):903-14. PubMed ID: 9198026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an automated method for detecting mammographic masses with a partial loss of region.
    Hatanaka Y; Hara T; Fujita H; Kasai S; Endo T; Iwase T
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1209-14. PubMed ID: 11811821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided mass detection on digitized mammograms using adaptive thresholding and fuzzy entropy.
    Younesi F; Alam N; Zoroofi RA; Ahmadian A; Guiti M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5638-41. PubMed ID: 18003291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms.
    Méndez AJ; Tahoces PG; Lado MJ; Souto M; Vidal JJ
    Med Phys; 1998 Jun; 25(6):957-64. PubMed ID: 9650186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system.
    Catarious DM; Baydush AH; Floyd CE
    Med Phys; 2004 Jun; 31(6):1512-20. PubMed ID: 15259655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated computerized classification of malignant and benign masses on digitized mammograms.
    Huo Z; Giger ML; Vyborny CJ; Wolverton DE; Schmidt RA; Doi K
    Acad Radiol; 1998 Mar; 5(3):155-68. PubMed ID: 9522881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of diagnostic accuracy of breast masses using digitized images versus screen-film mammography.
    Liang Z; Du X; Liu J; Yao X; Yang Y; Li K
    Acta Radiol; 2008 Jul; 49(6):618-22. PubMed ID: 18568552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast cancer detection: evaluation of a mass-detection algorithm for computer-aided diagnosis -- experience in 263 patients.
    Petrick N; Sahiner B; Chan HP; Helvie MA; Paquerault S; Hadjiiski LM
    Radiology; 2002 Jul; 224(1):217-24. PubMed ID: 12091686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms.
    Rangayyan RM; Shen L; Shen Y; Desautels JE; Bryant H; Terry TJ; Horeczko N; Rose MS
    IEEE Trans Inf Technol Biomed; 1997 Sep; 1(3):161-70. PubMed ID: 11020818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: an ROC study.
    Chan HP; Sahiner B; Helvie MA; Petrick N; Roubidoux MA; Wilson TE; Adler DD; Paramagul C; Newman JS; Sanjay-Gopal S
    Radiology; 1999 Sep; 212(3):817-27. PubMed ID: 10478252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiologists' preferences for digital mammographic display. The International Digital Mammography Development Group.
    Pisano ED; Cole EB; Major S; Zong S; Hemminger BM; Muller KE; Johnston RE; Walsh R; Conant E; Fajardo LL; Feig SA; Nishikawa RM; Yaffe MJ; Williams MB; Aylward SR
    Radiology; 2000 Sep; 216(3):820-30. PubMed ID: 10966717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm.
    Pereira DC; Ramos RP; do Nascimento MZ
    Comput Methods Programs Biomed; 2014 Apr; 114(1):88-101. PubMed ID: 24513228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an automated wavelet-based system dedicated to the detection of clustered microcalcifications in digital mammograms.
    Lado M; Tahoces PG; Méndez AJ; Souto M; Vidal JJ
    Med Inform Internet Med; 2001; 26(3):149-63. PubMed ID: 11706926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel automatic suspicious mass regions identification using Havrda & Charvat entropy and Otsu's N thresholding.
    Kurt B; Nabiyev VV; Turhan K
    Comput Methods Programs Biomed; 2014 May; 114(3):349-60. PubMed ID: 24681199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.