BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16487970)

  • 1. Neuronal vulnerability in transgenic mice expressing an inducible dominant-negative FGF receptor.
    Eckenstein FP; McGovern T; Kern D; Deignan J
    Exp Neurol; 2006 Apr; 198(2):338-49. PubMed ID: 16487970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A system for inducible gene expression in retinal ganglion cells.
    Kerrison JB; Duh EJ; Yu Y; Otteson DC; Zack DJ
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2932-9. PubMed ID: 16043868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over expression of FGF7 enhances cell proliferation but fails to cause pathology in corneal epithelium of Kerapr-rtTA/FGF7 bitransgenic mice.
    Hayashi M; Hayashi Y; Liu CY; Tichelaar JW; Kao WW
    Mol Vis; 2005 Mar; 11():201-7. PubMed ID: 15788998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization of glucocorticoid receptor positive cells in the hippocampal regions using green fluorescent protein transgenic mice.
    Nishi M; Usuku T; Itose M; Fujikawa K; Hosokawa K; Matsuda KI; Kawata M
    Neuroscience; 2007 Jun; 146(4):1555-60. PubMed ID: 17467182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice.
    Porrero C; Rubio-Garrido P; Avendaño C; Clascá F
    Brain Res; 2010 Jul; 1345():59-72. PubMed ID: 20510892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-type-specific and regulatable transgenesis in the adult brain: adenovirus-encoded combined transcriptional targeting and inducible transgene expression.
    Smith-Arica JR; Morelli AE; Larregina AT; Smith J; Lowenstein PR; Castro MG
    Mol Ther; 2000 Dec; 2(6):579-87. PubMed ID: 11124058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a dominant negative FGF receptor in developing GNRH1 neurons disrupts axon outgrowth and targeting to the median eminence.
    Gill JC; Tsai PS
    Biol Reprod; 2006 Mar; 74(3):463-72. PubMed ID: 16280414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneity and long-term stability of tetracycline-regulated gene expression with low basal activity by using the rtTA2S-M2 transactivator and insulator-flanked reporter vectors.
    Qu Z; Thottassery JV; Van Ginkel S; Manuvakhova M; Westbrook L; Roland-Lazenby C; Hays S; Kern FG
    Gene; 2004 Feb; 327(1):61-73. PubMed ID: 14960361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a new-generation reverse tetracycline transactivator system for quantitative control of conditional gene expression in the murine lung.
    Duerr J; Gruner M; Schubert SC; Haberkorn U; Bujard H; Mall MA
    Am J Respir Cell Mol Biol; 2011 Feb; 44(2):244-54. PubMed ID: 20395635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible and neuron-specific gene expression in the adult mouse brain with the rtTA2S-M2 system.
    Michalon A; Koshibu K; Baumgärtel K; Spirig DH; Mansuy IM
    Genesis; 2005 Dec; 43(4):205-12. PubMed ID: 16342161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doxycycline- and tetracycline-regulated transcriptional silencer enhance the expression level and transactivating performance of rtTA.
    Lai JF; Cheng HY; Cheng TL; Lin YY; Chen LC; Lin MT; Jou TS
    J Gene Med; 2004 Dec; 6(12):1403-13. PubMed ID: 15523716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting reverse tetracycline-dependent transactivator to murine mammary epithelial cells that express the progesterone receptor.
    Mukherjee A; Soyal SM; Fernandez-Valdivia R; DeMayo FJ; Lydon JP
    Genesis; 2007 Oct; 45(10):639-46. PubMed ID: 17941046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted transgene expression in neuronal precursors: watching young neurons in the old brain.
    Couillard-Despres S; Winner B; Karl C; Lindemann G; Schmid P; Aigner R; Laemke J; Bogdahn U; Winkler J; Bischofberger J; Aigner L
    Eur J Neurosci; 2006 Sep; 24(6):1535-45. PubMed ID: 17004917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat tyrosine hydroxylase promoter directs tetracycline-inducible foreign gene expression in dopaminergic cell types.
    Gardaneh M; O'Malley KL
    Brain Res Mol Brain Res; 2004 Jul; 126(2):173-80. PubMed ID: 15249141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain.
    Uchida S; Sakai S; Furuichi T; Hosoda H; Toyota K; Ishii T; Kitamoto A; Sekine M; Koike K; Masushige S; Murphy G; Silva AJ; Kida S
    Genes Brain Behav; 2006 Feb; 5(1):96-106. PubMed ID: 16436193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promotion of neurite outgrowth by fibroblast growth factor receptor 1 overexpression and lysosomal inhibition of receptor degradation in pheochromocytoma cells and adult sensory neurons.
    Hausott B; Schlick B; Vallant N; Dorn R; Klimaschewski L
    Neuroscience; 2008 May; 153(2):461-73. PubMed ID: 18400405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducibility of doxycycline-regulated gene in neural and neuroendocrine cells strongly depends on the appropriate choice of a tetracycline-responsive promoter.
    Klopotowska D; Strzadala L; Matuszyk J
    Neurochem Int; 2008 Jan; 52(1-2):221-9. PubMed ID: 17618706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2.
    Hirrlinger PG; Scheller A; Braun C; Hirrlinger J; Kirchhoff F
    Glia; 2006 Jul; 54(1):11-20. PubMed ID: 16575885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silencing and un-silencing of tetracycline-controlled genes in neurons.
    Zhu P; Aller MI; Baron U; Cambridge S; Bausen M; Herb J; Sawinski J; Cetin A; Osten P; Nelson ML; Kügler S; Seeburg PH; Sprengel R; Hasan MT
    PLoS One; 2007 Jun; 2(6):e533. PubMed ID: 17579707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducible neuronal expression of transgenic TGF-beta1 in vivo: dissection of short-term and long-term effects.
    Ueberham U; Ueberham E; Brückner MK; Seeger G; Gärtner U; Gruschka H; Gebhardt R; Arendt T
    Eur J Neurosci; 2005 Jul; 22(1):50-64. PubMed ID: 16029195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.