These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16487988)

  • 1. Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism.
    Sheliga BM; Kodaka Y; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Jun; 46(13):2041-60. PubMed ID: 16487988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial summation properties of the human ocular following response (OFR): evidence for nonlinearities due to local and global inhibitory interactions.
    Sheliga BM; Fitzgibbon EJ; Miles FA
    Vision Res; 2008 Aug; 48(17):1758-76. PubMed ID: 18603279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocular following responses of monkeys to the competing motions of two sinusoidal gratings.
    Matsuura K; Miura K; Taki M; Tabata H; Inaba N; Kawano K; Miles FA
    Neurosci Res; 2008 May; 61(1):56-69. PubMed ID: 18316135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors.
    Kodaka Y; Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2007 Sep; 47(20):2637-60. PubMed ID: 17706738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The visual motion detectors underlying ocular following responses in monkeys.
    Miura K; Matsuura K; Taki M; Tabata H; Inaba N; Kawano K; Miles FA
    Vision Res; 2006 Mar; 46(6-7):869-78. PubMed ID: 16356529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals.
    Sheliga BM; Chen KJ; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Mar; 46(6-7):979-92. PubMed ID: 16242168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial ocular following in humans: a response to first-order motion energy.
    Sheliga BM; Chen KJ; Fitzgibbon EJ; Miles FA
    Vision Res; 2005 Nov; 45(25-26):3307-21. PubMed ID: 15894346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism.
    Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2007 Feb; 47(4):479-500. PubMed ID: 17118422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-latency disparity vergence eye movements: a response to disparity energy.
    Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Oct; 46(21):3723-40. PubMed ID: 16765403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference in perceptual and oculomotor responses revealed by apparent motion stimuli presented with an interstimulus interval.
    Nohara S; Kawano K; Miura K
    J Neurophysiol; 2015 May; 113(9):3219-28. PubMed ID: 25810485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial summation properties of the human ocular following response (OFR): dependence upon the spatial frequency of the stimulus.
    Sheliga BM; Quaia C; Cumming BG; Fitzgibbon EJ
    Vision Res; 2012 Sep; 68():1-13. PubMed ID: 22819728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The initial disparity vergence elicited with single and dual grating stimuli in monkeys: evidence for disparity energy sensing and nonlinear interactions.
    Miura K; Sugita Y; Matsuura K; Inaba N; Kawano K; Miles FA
    J Neurophysiol; 2008 Nov; 100(5):2907-18. PubMed ID: 18768642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial ocular following in humans depends critically on the fourier components of the motion stimulus.
    Chen KJ; Sheliga BM; Fitzgibbon EJ; Miles FA
    Ann N Y Acad Sci; 2005 Apr; 1039():260-71. PubMed ID: 15826980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of vernier acuity for narrowband and broadband stimuli.
    Barrett BT; Whitaker D
    Spat Vis; 2004; 17(1-2):111-26. PubMed ID: 15078015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast sensitivity, first-order motion and Initial ocular following in demyelinating optic neuropathy.
    Rucker JC; Sheliga BM; Fitzgibbon EJ; Miles FA; Leigh RJ
    J Neurol; 2006 Sep; 253(9):1203-9. PubMed ID: 16649097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of color signals to ocular following responses.
    Matsuura K; Kawano K; Inaba N; Miura K
    Eur J Neurosci; 2016 Oct; 44(8):2600-2613. PubMed ID: 27519159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-wave and half-wave rectification in second-order motion perception.
    Solomon JA; Sperling G
    Vision Res; 1994 Sep; 34(17):2239-57. PubMed ID: 7941419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye movements in response to dichoptic motion: evidence for a parallel-hierarchical structure of visual motion processing in primates.
    Hayashi R; Miura K; Tabata H; Kawano K
    J Neurophysiol; 2008 May; 99(5):2329-46. PubMed ID: 18272870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a subtractive component in motion adaptation.
    Morgan MJ; Chubb C; Solomon JA
    Vision Res; 2011 Nov; 51(21-22):2312-6. PubMed ID: 21945995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast gain control in first- and second-order motion perception.
    Lu ZL; Sperling G
    J Opt Soc Am A Opt Image Sci Vis; 1996 Dec; 13(12):2305-18. PubMed ID: 8972586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.