These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16488219)

  • 61. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation.
    Wellnhofer E; Goubergrits L; Kertzscher U; Affeld K
    Biomed Eng Online; 2006 Jun; 5():39. PubMed ID: 16774680
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Laser angioplasty in a right coronary artery stent restenosis with the guidance of left internal mammary artery contrast injection: case report.
    Okmen E; Cakmak M; Celik S; Yapici F; Erdinler I; Ozturk R; Cam N
    Catheter Cardiovasc Interv; 2001 May; 53(1):71-4. PubMed ID: 11329222
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Computational Simulations of Provisional Stenting of a Diseased Coronary Artery Bifurcation Model.
    Chen HY; Chatzizisis YS; Louvard Y; Kassab GS
    Sci Rep; 2020 Jun; 10(1):9667. PubMed ID: 32541660
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pathophysiology of coronary artery in-stent restenosis.
    Kibos A; Campeanu A; Tintoiu I
    Acute Card Care; 2007; 9(2):111-9. PubMed ID: 17573586
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery.
    Morlacchi S; Chiastra C; Gastaldi D; Pennati G; Dubini G; Migliavacca F
    J Biomech Eng; 2011 Dec; 133(12):121010. PubMed ID: 22206427
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Wall shear stress: theoretical considerations and methods of measurement.
    Katritsis D; Kaiktsis L; Chaniotis A; Pantos J; Efstathopoulos EP; Marmarelis V
    Prog Cardiovasc Dis; 2007; 49(5):307-29. PubMed ID: 17329179
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress.
    Benard N; Coisne D; Donal E; Perrault R
    J Biomech; 2003 Jul; 36(7):991-8. PubMed ID: 12757808
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography.
    Goubergrits L; Wellnhofer E; Kertzscher U; Affeld K; Petz C; Hege HC
    Ann Biomed Eng; 2009 Apr; 37(4):682-91. PubMed ID: 19229618
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction.
    Chen MC; Lu PC; Chen JS; Hwang NH
    ASAIO J; 2005; 51(4):313-20. PubMed ID: 16156292
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery.
    Murphy JB; Boyle FJ
    Biorheology; 2010; 47(2):117-32. PubMed ID: 20683155
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Discordance of the areas of peak wall shear stress and tissue stress in coronary artery plaques as revealed by fluid-structure interaction finite element analysis: a case study.
    Asanuma T; Higashikuni Y; Yamashita H; Nagai R; Hisada T; Sugiura S
    Int Heart J; 2013; 54(1):54-8. PubMed ID: 23428927
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Spatial variations in shear stress in a 3-D bifurcation model at low Reynolds numbers.
    Rouhanizadeh M; Lin TC; Arcas D; Hwang J; Hsiai TK
    Ann Biomed Eng; 2005 Oct; 33(10):1360-74. PubMed ID: 16240085
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery.
    Evans DJ; Lawford PV; Gunn J; Walker D; Hose DR; Smallwood RH; Chopard B; Krafczyk M; Bernsdorf J; Hoekstra A
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3343-60. PubMed ID: 18603527
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis.
    Feldman CL; Ilegbusi OJ; Hu Z; Nesto R; Waxman S; Stone PH
    Am Heart J; 2002 Jun; 143(6):931-9. PubMed ID: 12075241
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Wall shear stress in normal left coronary artery tree.
    Soulis JV; Farmakis TM; Giannoglou GD; Louridas GE
    J Biomech; 2006; 39(4):742-9. PubMed ID: 16439244
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [The role of chemokines in the pathogenesis of restenosis].
    Latacz P; Piwowarska W
    Przegl Lek; 2004; 61(9):951-4. PubMed ID: 15803907
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model.
    Prosi M; Perktold K; Ding Z; Friedman MH
    J Biomech; 2004 Nov; 37(11):1767-75. PubMed ID: 15388320
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images.
    Chaichana T; Sun Z; Jewkes J
    Australas Phys Eng Sci Med; 2012 Jun; 35(2):231-6. PubMed ID: 22528858
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure-function relation in the coronary artery tree: from fluid dynamics to arterial bifurcations.
    Finet G; Huo Y; Rioufol G; Ohayon J; Guerin P; Kassab GS
    EuroIntervention; 2010 Dec; 6 Suppl J():J10-5. PubMed ID: 21930472
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.