BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16488227)

  • 1. Design factors influencing performance of constrained acetabular liners: finite element characterization.
    Bouchard SM; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(5):885-93. PubMed ID: 16488227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric element analysis of fretting in a model of a modular femoral component of a hip implant.
    Lewis G
    Biomed Mater Eng; 2004; 14(1):43-51. PubMed ID: 14757952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement.
    Kluess D; Martin H; Mittelmeier W; Schmitz KP; Bader R
    Med Eng Phys; 2007 May; 29(4):465-71. PubMed ID: 16901743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model.
    Bellini CM; Galbusera F; Ceroni RG; Raimondi MT
    Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [FE-analysis of surface stresses for the tribological system in total hip prostheses].
    Behrens BA; Helms G; Pösse O; Nolte I; Meyer-Lindenberg A; Rittmann P; Windhagen H; Pressel T
    Biomed Tech (Berl); 2006 Dec; 51(5-6):367-70. PubMed ID: 17155874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Problematic sites of third body embedment in polyethylene for total hip wear acceleration.
    Lundberg HJ; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(7):1208-16. PubMed ID: 15894322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental analysis of neutral, asymmetric and constraint liners for total hip replacement: investigation of range of motion and protection against joint instability].
    Bader R; Steinhauser E; Scholz R; Simnacher M; Mittelmeier W
    Z Orthop Ihre Grenzgeb; 2004; 142(5):577-85. PubMed ID: 15472768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of a three-dimensional model of a proximal femur-cemented femoral THJR component construct: influence of assigned interface conditions on strain energy density.
    Lewis G; Duggineni R
    Biomed Mater Eng; 2006; 16(5):319-27. PubMed ID: 17075167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association between dislocation, impingement, and articular geometry in retrieved acetabular polyethylene cups.
    Tanino H; Harman MK; Banks SA; Hodge WA
    J Orthop Res; 2007 Nov; 25(11):1401-7. PubMed ID: 17471491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D non-linear analysis of the acetabular construct following impaction grafting.
    Phillips AT; Pankaj P; Howie CR; Usmani AS; Simpson AH
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):125-33. PubMed ID: 16880163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constrained acetabular liners: mechanisms of failure.
    Yun AG; Padgett D; Pellicci P; Dorr LD
    J Arthroplasty; 2005 Jun; 20(4):536-41. PubMed ID: 16124973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis.
    Goebel P; Kluess D; Wieding J; Souffrant R; Heyer H; Sander M; Bader R
    J Orthop Sci; 2013 Mar; 18(2):264-70. PubMed ID: 23377753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pressfit of equatorially roughened cementless acetabular components--a finite element analysis].
    von Knoch M; Pandorf T; Büscher R; Piotrowski A; von Knoch F; Patsalis T; Wedemeyer C; Marx A; Fischer A; Löer F; Saxler G
    Biomed Tech (Berl); 2006 Apr; 51(1):21-6. PubMed ID: 16771126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shell retention with a cemented acetabular liner.
    Callaghan JJ; Liu SS; Schularick NM
    Orthopedics; 2009 Sep; 32(9):. PubMed ID: 19751011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetabular cup geometry and bone-implant interference have more influence on initial periprosthetic joint space than joint loading and surgical cup insertion.
    Ong KL; Lehman J; Notz WI; Santner TJ; Bartel DL
    J Biomech Eng; 2006 Apr; 128(2):169-75. PubMed ID: 16524327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Evaluation of the assembling and retention forces of constraint liners for total hip replacement].
    Steinhauser E; Bader R; Simnacher M; Scholz R; Gradinger R
    Biomed Tech (Berl); 2005 Oct; 50(10):314-9. PubMed ID: 16300046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of contact mechanics in McKee-farrar metal-on-metal hip implants.
    Yew A; Jagatia M; Ensaff H; Jin ZM
    Proc Inst Mech Eng H; 2003; 217(5):333-40. PubMed ID: 14558645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of shear stresses at the implant-bone interface of an acetabular press-fit cup during impingement.
    Voigt C; Klöhn C; Bader R; von Salis-Soglio G; Scholz R
    Biomed Tech (Berl); 2007 Apr; 52(2):208-15. PubMed ID: 17408381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of acetabular cup size on the short-term stability of revision hip arthroplasty: a finite element investigation.
    Phillips AT; Pankaj ; Usmani AS; Howie CR
    Proc Inst Mech Eng H; 2004; 218(4):239-49. PubMed ID: 15376726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.