These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 16488234)

  • 1. Fundamental mechanics of aortic heart valve closure.
    Hose DR; Narracott AJ; Penrose JM; Baguley D; Jones IP; Lawford PV
    J Biomech; 2006; 39(5):958-67. PubMed ID: 16488234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    J Heart Valve Dis; 2003 Nov; 12(6):772-80. PubMed ID: 14658820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method.
    Mohammadi H; Ahmadian MT; Wan WK
    Med Eng Phys; 2006 Mar; 28(2):122-33. PubMed ID: 15946890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity of closure of Björk-Shiley Convexo-Concave mitral valves: effect of mitral annulus orientation and rate of left ventricular pressure rise.
    Blick EF; Wieting DW; Inderbitzen R; Schreck S; Stein PD
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S26-30; discussion S30-1. PubMed ID: 8581208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure.
    Katayama S; Umetani N; Sugiura S; Hisada T
    J Thorac Cardiovasc Surg; 2008 Dec; 136(6):1528-35, 1535.e1. PubMed ID: 19114202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-structure interaction of deformable aortic prostheses with a bileaflet mechanical valve.
    de Tullio MD; Afferrante L; Demelio G; Pascazio G; Verzicco R
    J Biomech; 2011 Jun; 44(9):1684-90. PubMed ID: 21496823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta.
    Borazjani I; Ge L; Sotiropoulos F
    Ann Biomed Eng; 2010 Feb; 38(2):326-44. PubMed ID: 19806458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of tip angle on cavitation potential during closure of a bileaflet prosthesis model.
    Zhang P; Yeo JH; Qian P; Hwang NH
    J Heart Valve Dis; 2007 Jul; 16(4):430-9. PubMed ID: 17702370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function.
    Makhijani VB; Yang HQ; Dionne PJ; Thubrikar MJ
    ASAIO J; 1997; 43(5):M387-92. PubMed ID: 9360067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of vortex formation on left ventricular filling and mitral valve efficiency.
    Pierrakos O; Vlachos PP
    J Biomech Eng; 2006 Aug; 128(4):527-39. PubMed ID: 16813444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
    Makhijani VB; Yang HQ; Singhal AK; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S35-44; discussion S44-8. PubMed ID: 8061869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting ATS Open Pivot heart valve performance with computational fluid dynamics.
    Dumont K; Vierendeels JA; Segers P; Van Nooten GJ; Verdonck PR
    J Heart Valve Dis; 2005 May; 14(3):393-9. PubMed ID: 15974535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the opening mechanism of the aortic valve: some observations from simulations.
    Howard IC; Patterson EA; Yoxall A
    J Med Eng Technol; 2003; 27(6):259-66. PubMed ID: 14602517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: an in vitro study.
    Lee CS; Aluri S; Chandran KB
    J Heart Valve Dis; 1996 Jan; 5(1):104-13. PubMed ID: 8834733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.