These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16488480)

  • 1. Hydraulically coupled microejection technique for precise local solution delivery in tissues.
    Pakhomov AG; Semenov I; Brenner R; Toney GM
    J Neurosci Methods; 2006 Sep; 155(2):231-40. PubMed ID: 16488480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An economic method to build a puffing instrument for drug application in vitro.
    Guo Y; Liu C; Hu L; Wang X; Alam M; Wang H
    J Neurosci Methods; 2015 Dec; 256():122-6. PubMed ID: 26343324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro.
    Zhang L; Kolaj M; Renaud LP
    Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha-Chloralose diminishes gamma oscillations in rat hippocampal slices.
    Wang K; Zheng C; Wu C; Gao M; Liu Q; Yang K; Ellsworth K; Xu L; Wu J
    Neurosci Lett; 2008 Aug; 441(1):66-71. PubMed ID: 18597935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple dual pressure-ejection system and calibration method for brief local applications of drugs and modified salines.
    Marchand AR; Pearlstein E
    J Neurosci Methods; 1995 Aug; 60(1-2):99-105. PubMed ID: 8544493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topical application of penicillin into hippocampal in vitro slices: A methodological study using benzyl (14C) penicillin.
    Olofsson S; Ridderheim PA; Silfvenius H
    Acta Physiol Scand; 1980 May; 109(1):27-36. PubMed ID: 7446159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining in vivo volume-controlled pressure microejection with extracellular unit recording.
    Akaoka H; Saunier CF; Chergui K; Charléty P; Buda M; Chouvet G
    J Neurosci Methods; 1992 Apr; 42(1-2):119-28. PubMed ID: 1405729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress.
    Verkuyl JM; Karst H; Joëls M
    Eur J Neurosci; 2005 Jan; 21(1):113-21. PubMed ID: 15654848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesencephalic astrocyte-derived neurotrophic factor enhances nigral gamma-aminobutyric acid release.
    Zhou C; Xiao C; Commissiong JW; Krnjević K; Ye JH
    Neuroreport; 2006 Feb; 17(3):293-7. PubMed ID: 16462600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of VPAC2 receptor activation on membrane excitability and GABAergic transmission in subparaventricular zone neurons targeted by suprachiasmatic nucleus.
    Hermes ML; Kolaj M; Doroshenko P; Coderre E; Renaud LP
    J Neurophysiol; 2009 Sep; 102(3):1834-42. PubMed ID: 19571188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic analysis of pressure ejection of drugs from micropipettes.
    Hanani M
    J Basic Clin Physiol Pharmacol; 1997; 8(1-2):57-71. PubMed ID: 9363569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying small quantities of multiple compounds to defined locations of in vitro brain slices.
    Pidoplichko VI; Dani JA
    J Neurosci Methods; 2005 Mar; 142(1):55-66. PubMed ID: 15652617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by alpha-tetrahydrodeoxycorticosterone (THDOC) of pre-sympathetic parvocellular neurones in the paraventricular nucleus of rat hypothalamus.
    Womack MD; Pyner S; Barrett-Jolley R
    Br J Pharmacol; 2006 Nov; 149(5):600-7. PubMed ID: 17001301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for the intracranial delivery of reagents to voltammetric recording sites.
    Moquin KF; Jaquins-Gerstl A; Michael AC
    J Neurosci Methods; 2012 Jul; 208(2):101-7. PubMed ID: 22580054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons.
    Di S; Malcher-Lopes R; Marcheselli VL; Bazan NG; Tasker JG
    Endocrinology; 2005 Oct; 146(10):4292-301. PubMed ID: 15994343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat.
    Henderson Z; Jones GA
    Neuroscience; 2005; 132(3):789-800. PubMed ID: 15837139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient voltage-dependent potassium currents are reduced in NTS neurons isolated from renal wrap hypertensive rats.
    Belugin S; Mifflin S
    J Neurophysiol; 2005 Dec; 94(6):3849-59. PubMed ID: 16293589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance.
    Zheng H; Patterson LM; Morrison C; Banfield BW; Randall JA; Browning KN; Travagli RA; Berthoud HR
    Neuroscience; 2005; 135(2):611-25. PubMed ID: 16111819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability.
    Wu N; Enomoto A; Tanaka S; Hsiao CF; Nykamp DQ; Izhikevich E; Chandler SH
    J Neurophysiol; 2005 May; 93(5):2710-22. PubMed ID: 15625100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.