These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 16488501)
41. Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae. Hama S; Tamalampudi S; Shindo N; Numata T; Yamaji H; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2008 Jul; 79(6):1009-18. PubMed ID: 18496686 [TBL] [Abstract][Full Text] [Related]
42. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Jordà J; Jouhten P; Cámara E; Maaheimo H; Albiol J; Ferrer P Microb Cell Fact; 2012 May; 11():57. PubMed ID: 22569166 [TBL] [Abstract][Full Text] [Related]
43. Improving intracellular production of recombinant protein in Pichia pastoris using an optimized preinduction glycerol-feeding scheme. Wei C; Zhou X; Zhang Y Appl Microbiol Biotechnol; 2008 Feb; 78(2):257-64. PubMed ID: 18183387 [TBL] [Abstract][Full Text] [Related]
44. Production of single-chain variable fragment antibody (scFv) in fed-batch and continuous culture of Pichia pastoris by two different methanol feeding methods. Yamawaki S; Matsumoto T; Ohnishi Y; Kumada Y; Shiomi N; Katsuda T; Lee EK; Katoh S J Biosci Bioeng; 2007 Nov; 104(5):403-7. PubMed ID: 18086441 [TBL] [Abstract][Full Text] [Related]
45. Effective and stable porcine interferon-alpha production by Pichia pastoris fed-batch cultivation with multi-variables clustering and analysis. Yu R; Dong S; Zhu Y; Jin H; Gao M; Duan Z; Zheng Z; Shi Z; Li Z Bioprocess Biosyst Eng; 2010 May; 33(4):473-83. PubMed ID: 19649659 [TBL] [Abstract][Full Text] [Related]
46. Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes. Jenzsch M; Gnoth S; Beck M; Kleinschmidt M; Simutis R; Lübbert A J Biotechnol; 2006 Dec; 127(1):84-94. PubMed ID: 16962679 [TBL] [Abstract][Full Text] [Related]
47. Cell Surface Display and Characterization of Rhizopus oryzae Lipase in Pichia pastoris Using Sed1p as an Anchor Protein. Li W; Shi H; Ding H; Wang L; Zhang Y; Li X; Wang F Curr Microbiol; 2015 Jul; 71(1):150-5. PubMed ID: 26013444 [TBL] [Abstract][Full Text] [Related]
48. Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris. Khatri NK; Hoffmann F Appl Microbiol Biotechnol; 2006 Sep; 72(3):492-8. PubMed ID: 16532314 [TBL] [Abstract][Full Text] [Related]
49. Droplet digital PCR-aided screening and characterization of Pichia pastoris multiple gene copy strains. Cámara E; Albiol J; Ferrer P Biotechnol Bioeng; 2016 Jul; 113(7):1542-51. PubMed ID: 26704939 [TBL] [Abstract][Full Text] [Related]
50. Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. Arnau C; Ramon R; Casas C; Valero F Enzyme Microb Technol; 2010 May; 46(6):494-500. PubMed ID: 25919625 [TBL] [Abstract][Full Text] [Related]
51. Decrease of hirudin degradation by deleting the KEX1 gene in recombinant Pichia pastoris. Ni Z; Zhou X; Sun X; Wang Y; Zhang Y Yeast; 2008 Jan; 25(1):1-8. PubMed ID: 17973232 [TBL] [Abstract][Full Text] [Related]
52. Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. Zhang W; Hywood Potter KJ; Plantz BA; Schlegel VL; Smith LA; Meagher MM J Ind Microbiol Biotechnol; 2003 Apr; 30(4):210-5. PubMed ID: 12687491 [TBL] [Abstract][Full Text] [Related]
53. Dynamic flux balance analysis for pharmaceutical protein production by Pichia pastoris: human growth hormone. Calık P; Sahin M; Taşpınar H; Soyaslan EŞ; Inankur B Enzyme Microb Technol; 2011 Mar; 48(3):209-16. PubMed ID: 22112902 [TBL] [Abstract][Full Text] [Related]
54. Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation. Zhang W; Sinha J; Smith LA; Inan M; Meagher MM Biotechnol Prog; 2005; 21(2):386-93. PubMed ID: 15801775 [TBL] [Abstract][Full Text] [Related]
55. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. Minning S; Serrano A; Ferrer P; Solá C; Schmid RD; Valero F J Biotechnol; 2001 Mar; 86(1):59-70. PubMed ID: 11223145 [TBL] [Abstract][Full Text] [Related]
56. Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris Mut+ strain. Schenk J; Balazs K; Jungo C; Urfer J; Wegmann C; Zocchi A; Marison IW; von Stockar U Biotechnol Bioeng; 2008 Feb; 99(2):368-77. PubMed ID: 17636485 [TBL] [Abstract][Full Text] [Related]
57. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris. Liu WC; Zhu P Methods Mol Biol; 2018; 1674():109-116. PubMed ID: 28921432 [TBL] [Abstract][Full Text] [Related]
58. Secretion of pro- and mature Rhizopus arrhizus lipases by Pichia pastoris and properties of the proteins. Niu WN; Li ZP; Tan T Mol Biotechnol; 2006 Jan; 32(1):73-81. PubMed ID: 16382184 [TBL] [Abstract][Full Text] [Related]
59. On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors. Odman P; Johansen CL; Olsson L; Gernaey KV; Lantz AE J Biotechnol; 2009 Oct; 144(2):102-12. PubMed ID: 19735680 [TBL] [Abstract][Full Text] [Related]
60. A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. Schenk J; Marison IW; von Stockar U J Biotechnol; 2007 Feb; 128(2):344-53. PubMed ID: 17067711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]