BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16488598)

  • 1. Concanavalin A for in vivo glucose sensing: a biotoxicity review.
    Ballerstadt R; Evans C; McNichols R; Gowda A
    Biosens Bioelectron; 2006 Aug; 22(2):275-84. PubMed ID: 16488598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor.
    Ballerstadt R; Kholodnykh A; Evans C; Boretsky A; Motamedi M; Gowda A; McNichols R
    Anal Chem; 2007 Sep; 79(18):6965-74. PubMed ID: 17702528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biosensors for continuous glucose and lactate monitoring].
    Korf J; Tiessen RG; Venema K; Rhemrev MM
    Ned Tijdschr Geneeskd; 2003 Jun; 147(25):1204-8. PubMed ID: 12848054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation of temperature and concanavalin A concentratration effects for glucose determination by the viscometric affinity assay.
    Beyer U; Ehwald R
    Biotechnol Prog; 2000; 16(6):1119-23. PubMed ID: 11101343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of glucose-responsive bioconjugated gel particles using surfactant-free emulsion polymerization.
    Kawamura A; Hata Y; Miyata T; Uragami T
    Colloids Surf B Biointerfaces; 2012 Nov; 99():74-81. PubMed ID: 22078928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.
    Dutt-Ballerstadt R; Evans C; Pillai AP; Gowda A
    Biosens Bioelectron; 2014 Nov; 61():280-4. PubMed ID: 24906086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous glucose monitoring in interstitial fluid using glucose oxidase-based sensor compared to established blood glucose measurement in rats.
    Woderer S; Henninger N; Garthe CD; Kloetzer HM; Hajnsek M; Kamecke U; Gretz N; Kraenzlin B; Pill J
    Anal Chim Acta; 2007 Jan; 581(1):7-12. PubMed ID: 17386418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue.
    Thomé-Duret V; Gangnerau MN; Zhang Y; Wilson GS; Reach G
    Diabetes Metab; 1996 Jun; 22(3):174-8. PubMed ID: 8697304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold.
    Ju YM; Yu B; Koob TJ; Moussy Y; Moussy F
    J Biomed Mater Res A; 2008 Oct; 87(1):136-46. PubMed ID: 18085651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a Concanavalin A-based glucose sensor using fluorescence anisotropy.
    Cummins BM; Garza JT; Coté GL
    Anal Chem; 2013 Jun; 85(11):5397-404. PubMed ID: 23627407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the possibility of real-time monitoring of glucose in cell culture by microdialysis using a fluorescent glucose binding protein sensor.
    Ge X; Rao G; Tolosa L
    Biotechnol Prog; 2008; 24(3):691-7. PubMed ID: 18422364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically monitoring the binding of concanavalin A and ovalbumin.
    Sugawara K; Yugami A; Kadoya T; Hosaka K
    Talanta; 2011 Jul; 85(1):425-9. PubMed ID: 21645720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring.
    Ballerstadt R; Polak A; Beuhler A; Frye J
    Biosens Bioelectron; 2004 Mar; 19(8):905-14. PubMed ID: 15128110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral.
    Oliveira MD; Correia MT; Coelho LC; Diniz FB
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):13-9. PubMed ID: 18573642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose sensors: a review of current and emerging technology.
    Oliver NS; Toumazou C; Cass AE; Johnston DG
    Diabet Med; 2009 Mar; 26(3):197-210. PubMed ID: 19317813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming the aggregation problem: a new type of fluorescent ligand for ConA-based glucose sensing.
    Cummins BM; Li M; Locke AK; Birch DJS; Vigh G; Coté GL
    Biosens Bioelectron; 2015 Jan; 63():53-60. PubMed ID: 25058939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue response to subcutaneous implantation of glucose-oxidase-based glucose sensors in rats.
    Henninger N; Woderer S; Kloetzer HM; Staib A; Gillen R; Li L; Yu X; Gretz N; Kraenzlin B; Pill J
    Biosens Bioelectron; 2007 Aug; 23(1):26-34. PubMed ID: 17467971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence emission and polarization for analyzing binding of ruthenium metalloglycocluster to lectin and tetanus toxin C-fragment.
    Okada T; Makino T; Minoura N
    Bioconjug Chem; 2009 Jul; 20(7):1296-8. PubMed ID: 19537755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.