These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 16488618)
1. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms. Sobierajska K; Fabczak H; Fabczak S J Photochem Photobiol B; 2006 Jun; 83(3):163-71. PubMed ID: 16488618 [TBL] [Abstract][Full Text] [Related]
2. Photosensory transduction in ciliates. Role of intracellular pH and comparison between Stentor coeruleus and Blepharisma japonicum. Fabczak H; Fabczak S; Song PS; Checcucci G; Ghetti F; Lenci F J Photochem Photobiol B; 1993 Nov; 21(1):47-52. PubMed ID: 8289111 [TBL] [Abstract][Full Text] [Related]
3. Photosensory transduction in ciliates. I. An analysis of light-induced electrical and motile responses in Stentor coeruleus. Fabczak S; Fabczak H; Tao N; Song PS Photochem Photobiol; 1993 Apr; 57(4):696-701. PubMed ID: 8506399 [TBL] [Abstract][Full Text] [Related]
4. Evidence for ciliary pigment localization in colored ciliates and implications for their photosensory transduction chain: a confocal microscopy study. Colombetti G; Checcucci G; Lucia S; Usai C; Ramoino P; Bianchini P; Pesce M; Vicidomini G; Diaspro A Microsc Res Tech; 2007 Dec; 70(12):1028-33. PubMed ID: 17661390 [TBL] [Abstract][Full Text] [Related]
5. A rhodopsin immunoanalog in the related photosensitive protozoans Blepharisma japonicum and Stentor coeruleus. Fabczak H; Sobierajska K; Fabczak S Photochem Photobiol Sci; 2008 Sep; 7(9):1041-5. PubMed ID: 18754050 [TBL] [Abstract][Full Text] [Related]
6. Photosensory transduction in ciliates. IV. Modulation of the photomovement response of Blepharisma japonicum by cGMP. Fabczak H; Tao N; Fabczak S; Song PS Photochem Photobiol; 1993 May; 57(5):889-92. PubMed ID: 7687783 [TBL] [Abstract][Full Text] [Related]
7. Additional evidence for blepharismin photoreceptor pigment mediating step-up photophobic response of unicellular organism, Blepharisma. Matsuoka T; Watanabe Y; Sagara Y; Takayanagi M; Kato Y Photochem Photobiol; 1995 Jul; 62(1):190-3. PubMed ID: 7638265 [TBL] [Abstract][Full Text] [Related]
9. Behaviors producing photodispersal in Stentor coeruleus. Menzies E; Das N; Wood DC Photochem Photobiol; 2004; 80(3):401-7. PubMed ID: 15623320 [TBL] [Abstract][Full Text] [Related]
10. Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin. Mukherjee P; Fulton DB; Halder M; Han X; Armstrong DW; Petrich JW; Lobban CS J Phys Chem B; 2006 Mar; 110(12):6359-64. PubMed ID: 16553454 [TBL] [Abstract][Full Text] [Related]
11. Light-induced and apoptosis-like cell death in the unicellular eukaryote, Blepharisma japonicum. Takada Y; Matsuoka T Cell Biol Int; 2009 Jul; 33(7):728-33. PubMed ID: 19393747 [TBL] [Abstract][Full Text] [Related]
12. Primary stages in photosignal transduction leading to step-up photophobic response in the unicellular eukaryote Blepharisma japonicum. Kida A; Takada Y; Kotsuki H; Tokumori D; Checcucci G; Matsuoka T Microbios; 2001; 106(415):189-201. PubMed ID: 11522130 [TBL] [Abstract][Full Text] [Related]
13. A videomicroscopic study of the effect of l-cis-diltiazem on the photobehavior of Stentor coeruleus. Walerczyk M; Fabczak H; Fabczak S Photochem Photobiol; 2003 Mar; 77(3):339-42. PubMed ID: 12685664 [TBL] [Abstract][Full Text] [Related]
14. [Photophobic response in Stentor coeruleus--electrophysiologic investigations]. Walerczyk M; Fabczak H; Fabczak S Postepy Hig Med Dosw; 2000; 54(3):329-39. PubMed ID: 10941267 [TBL] [Abstract][Full Text] [Related]
15. Contribution of phosphoinositide-dependent signalling to photomotility of Blepharisma ciliate. Fabczak H J Photochem Photobiol B; 2000; 55(2-3):120-7. PubMed ID: 10942076 [TBL] [Abstract][Full Text] [Related]
16. Phototaxis and photophobic responses in Stentor coeruleus. Action spectrum and role of Ca2+ fluxes. Kim IH; Prusti RK; Song PS; Häder DP; Häder M Biochim Biophys Acta; 1984 Jun; 799(3):298-304. PubMed ID: 6428464 [TBL] [Abstract][Full Text] [Related]
17. Distinguishing Activities in the Photodynamic Arsenals of the Pigmented Ciliates Blepharisma sinuosum Sawaya, 1940 and Blepharisma japonicum Suzuki, 1954 (Ciliophora: Heterotrichea). Cavaleiro J; Oliveira NB; Ribeiro TA; Guimarães LF; Fernandes NM; da Silva-Neto ID; Marszaukowski F; Wohnrath K; Barreto CB; Schweikert M; Petroni G; Ortenzi C; Buonanno F; Picciani PHS; Oliveira ON; Soares CAG Photochem Photobiol; 2020 Nov; 96(6):1251-1266. PubMed ID: 32472704 [TBL] [Abstract][Full Text] [Related]
18. Photosensory transduction in ciliates. II. Possible role of G-protein and cGMP in Stentor coeruleus. Fabczak H; Park PB; Fabczak S; Song PS Photochem Photobiol; 1993 Apr; 57(4):702-6. PubMed ID: 8389485 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic study of the chromophore--protein association and primary photoinduced events in the photoreceptor of Blepharisma japonicum. Plaza P; Mahet M; Martin MM; Angelini N; Malatesta M; Checcucci G; Lenci F Photochem Photobiol Sci; 2005 Sep; 4(9):754-61. PubMed ID: 16121288 [TBL] [Abstract][Full Text] [Related]
20. Deuterium oxide (D2O) enhances the photosensitivity of Stentor coeruleus. Iwatsuki K; Song PS Biophys J; 1985 Dec; 48(6):1045-8. PubMed ID: 3004613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]