BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16488653)

  • 1. Recent advances in oxygenase-catalyzed biotransformations.
    Urlacher VB; Schmid RD
    Curr Opin Chem Biol; 2006 Apr; 10(2):156-61. PubMed ID: 16488653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization.
    Bühler B; Schmid A
    J Biotechnol; 2004 Sep; 113(1-3):183-210. PubMed ID: 15380656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective but multifunctional oxygenases in secondary metabolism.
    Cochrane RV; Vederas JC
    Acc Chem Res; 2014 Oct; 47(10):3148-61. PubMed ID: 25250512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidizing enzymes as biocatalysts.
    Burton SG
    Trends Biotechnol; 2003 Dec; 21(12):543-9. PubMed ID: 14624863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cofactor-independent oxidases and oxygenases.
    Fetzner S; Steiner RA
    Appl Microbiol Biotechnol; 2010 Apr; 86(3):791-804. PubMed ID: 20157809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygenases as Powerful Weapons in the Microbial Degradation of Pesticides.
    Cheng M; Chen D; Parales RE; Jiang J
    Annu Rev Microbiol; 2022 Sep; 76():325-348. PubMed ID: 35650666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution as a method to create enantioselective cyclohexanone monooxygenases for catalysis in Baeyer-Villiger reactions.
    Reetz MT; Brunner B; Schneider T; Schulz F; Clouthier CM; Kayser MM
    Angew Chem Int Ed Engl; 2004 Aug; 43(31):4075-8. PubMed ID: 15300699
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxygenases without requirement for cofactors or metal ions.
    Fetzner S
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):243-57. PubMed ID: 12436305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biooxidation of bridged cycloketones using Baeyer-Villiger monooxygenases of various bacterial origin.
    Snajdrova R; Braun I; Bach T; Mereiter K; Mihovilovic MD
    J Org Chem; 2007 Dec; 72(25):9597-603. PubMed ID: 18001099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing biocatalysis through enzyme, cellular, and platform engineering.
    Cirino PC; Sun L
    Biotechnol Prog; 2008; 24(3):515-9. PubMed ID: 18335955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific Interactions between the ferredoxin and terminal oxygenase components of a class IIB Rieske nonheme iron oxygenase, carbazole 1,9a-dioxygenase.
    Inoue K; Ashikawa Y; Umeda T; Abo M; Katsuki J; Usami Y; Noguchi H; Fujimoto Z; Terada T; Yamane H; Nojiri H
    J Mol Biol; 2009 Sep; 392(2):436-51. PubMed ID: 19616558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative biotransformations using oxygenases.
    Li Z; van Beilen JB; Duetz WA; Schmid A; de Raadt A; Griengl H; Witholt B
    Curr Opin Chem Biol; 2002 Apr; 6(2):136-44. PubMed ID: 12038996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450 monooxygenases: perspectives for synthetic application.
    Urlacher VB; Eiben S
    Trends Biotechnol; 2006 Jul; 24(7):324-30. PubMed ID: 16759725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases.
    Straganz GD; Nidetzky B
    Chembiochem; 2006 Oct; 7(10):1536-48. PubMed ID: 16858718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparative use of isolated CYP102 monooxygenases -- a critical appraisal.
    Eiben S; Kaysser L; Maurer S; Kühnel K; Urlacher VB; Schmid RD
    J Biotechnol; 2006 Aug; 124(4):662-9. PubMed ID: 16716428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products.
    Nolan LC; O'Connor KE
    Biotechnol Lett; 2008 Nov; 30(11):1879-91. PubMed ID: 18612597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygenase domain of Drosophila melanogaster nitric oxide synthase: unique kinetic parameters enable a more efficient NO release.
    Ray SS; Tejero J; Wang ZQ; Dutta T; Bhattacharjee A; Regulski M; Tully T; Ghosh S; Stuehr DJ
    Biochemistry; 2007 Oct; 46(42):11857-64. PubMed ID: 17900148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical diversity through biotransformations.
    Müller M
    Curr Opin Biotechnol; 2004 Dec; 15(6):591-8. PubMed ID: 15560987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis.
    Widboom PF; Fielding EN; Liu Y; Bruner SD
    Nature; 2007 May; 447(7142):342-5. PubMed ID: 17507985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.