BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16488918)

  • 1. Identification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-1.
    Gabrielson KM; Cancel JD; Morua LF; Larsen PB
    J Exp Bot; 2006; 57(4):943-51. PubMed ID: 16488918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis.
    Larsen PB; Geisler MJ; Jones CA; Williams KM; Cancel JD
    Plant J; 2005 Feb; 41(3):353-63. PubMed ID: 15659095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment.
    Larsen PB; Cancel J; Rounds M; Ochoa V
    Planta; 2007 May; 225(6):1447-58. PubMed ID: 17171374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of suppressor mutants of stop1.
    Jiang F; Wang T; Wang Y; Kochian LV; Chen F; Liu J
    BMC Plant Biol; 2017 Jul; 17(1):128. PubMed ID: 28738784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest.
    Rounds MA; Larsen PB
    Curr Biol; 2008 Oct; 18(19):1495-500. PubMed ID: 18835170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ABC transporter complex encoded by Aluminum Sensitive 3 and NAP3 is required for phosphate deficiency responses in Arabidopsis.
    Belal R; Tang R; Li Y; Mabrouk Y; Badr E; Luan S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):18-23. PubMed ID: 25983320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUV2, which encodes an ATR-related cell cycle checkpoint and putative plant ATRIP, is required for aluminium-dependent root growth inhibition in Arabidopsis.
    Sjogren CA; Larsen PB
    Plant Cell Environ; 2017 Sep; 40(9):1849-1860. PubMed ID: 28556304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum-Dependent Terminal Differentiation of the Arabidopsis Root Tip Is Mediated through an ATR-, ALT2-, and SOG1-Regulated Transcriptional Response.
    Sjogren CA; Bolaris SC; Larsen PB
    Plant Cell; 2015 Sep; 27(9):2501-15. PubMed ID: 26320227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression genome-wide association study identifies that phosphatidylinositol-derived signalling regulates ALUMINIUM SENSITIVE3 expression under aluminium stress in the shoots of Arabidopsis thaliana.
    Sadhukhan A; Agrahari RK; Wu L; Watanabe T; Nakano Y; Panda SK; Koyama H; Kobayashi Y
    Plant Sci; 2021 Jan; 302():110711. PubMed ID: 33288018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots.
    Dong J; PiƱeros MA; Li X; Yang H; Liu Y; Murphy AS; Kochian LV; Liu D
    Mol Plant; 2017 Feb; 10(2):244-259. PubMed ID: 27847325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition.
    Nezames CD; Sjogren CA; Barajas JF; Larsen PB
    Plant Cell; 2012 Feb; 24(2):608-21. PubMed ID: 22345493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities.
    Sawaki Y; Iuchi S; Kobayashi Y; Kobayashi Y; Ikka T; Sakurai N; Fujita M; Shinozaki K; Shibata D; Kobayashi M; Koyama H
    Plant Physiol; 2009 May; 150(1):281-94. PubMed ID: 19321711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis.
    Huang CF; Yamaji N; Ma JF
    Plant Physiol; 2010 Aug; 153(4):1669-77. PubMed ID: 20498340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots.
    Larsen PB; Degenhardt J; Tai CY; Stenzler LM; Howell SH; Kochian LV
    Plant Physiol; 1998 May; 117(1):9-18. PubMed ID: 9576769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance.
    Zhu XF; Lei GJ; Wang ZW; Shi YZ; Braam J; Li GX; Zheng SJ
    Plant Physiol; 2013 Aug; 162(4):1947-55. PubMed ID: 23776189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance.
    Deng W; Luo K; Li D; Zheng X; Wei X; Smith W; Thammina C; Lu L; Li Y; Pei Y
    J Exp Bot; 2006; 57(15):4235-43. PubMed ID: 17101715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis mgd mutants with reduced monogalactosyldiacylglycerol contents are hypersensitive to aluminium stress.
    Liu C; Liu Y; Wang S; Ke Q; Yin L; Deng X; Feng B
    Ecotoxicol Environ Saf; 2020 Oct; 203():110999. PubMed ID: 32888604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-pH and aluminum resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots.
    Bose J; Babourina O; Shabala S; Rengel Z
    Plant Cell Physiol; 2013 Jul; 54(7):1093-104. PubMed ID: 23620479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.
    Park J; Song WY; Ko D; Eom Y; Hansen TH; Schiller M; Lee TG; Martinoia E; Lee Y
    Plant J; 2012 Jan; 69(2):278-88. PubMed ID: 21919981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis mutants with increased sensitivity to aluminum.
    Larsen PB; Tai CY; Kochian LV; Howell SH
    Plant Physiol; 1996 Mar; 110(3):743-51. PubMed ID: 8819866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.