BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16489585)

  • 1. The effect of the osmolyte trimethylamine N-oxide on the stability of the prion protein at low pH.
    Granata V; Palladino P; Tizzano B; Negro A; Berisio R; Zagari A
    Biopolymers; 2006 Jun; 82(3):234-40. PubMed ID: 16489585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmolyte trimethylamine N-oxide converts recombinant alpha-helical prion protein to its soluble beta-structured form at high temperature.
    Nandi PK; Bera A; Sizaret PY
    J Mol Biol; 2006 Sep; 362(4):810-20. PubMed ID: 16949096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of cosolutes on protein dynamics: the reversal of denaturant-induced protein fluctuations by trimethylamine N-oxide.
    Doan-Nguyen V; Loria JP
    Protein Sci; 2007 Jan; 16(1):20-9. PubMed ID: 17123958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous and reversible folding of a soluble amino-terminally truncated segment of the mouse prion protein.
    Hornemann S; Glockshuber R
    J Mol Biol; 1996 Sep; 261(5):614-9. PubMed ID: 8800210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling a prion protein dimer: predictions for fibril formation.
    Warwicker J
    Biochem Biophys Res Commun; 2000 Nov; 278(3):646-52. PubMed ID: 11095963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for His155 in binding of human prion peptide144-167 to immobilised prion protein.
    Hesp JR; Raven ND; Sutton JM
    Biochem Biophys Res Commun; 2007 Oct; 362(3):695-9. PubMed ID: 17761148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.
    Leliveld SR; Stitz L; Korth C
    Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of recombinant PrPc to human plasminogen: kinetic and thermodynamic study using a resonant mirror biosensor.
    Cuccioloni M; Amici M; Eleuteri AM; Biagetti M; Barocci S; Angeletti M
    Proteins; 2005 Feb; 58(3):728-34. PubMed ID: 15609351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences between the prion protein and its homolog Doppel: a partially structured state with implications for scrapie formation.
    Nicholson EM; Mo H; Prusiner SB; Cohen FE; Marqusee S
    J Mol Biol; 2002 Feb; 316(3):807-15. PubMed ID: 11866533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions.
    Colacino S; Tiana G; Broglia RA; Colombo G
    Proteins; 2006 Mar; 62(3):698-707. PubMed ID: 16432880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tropoelastin as a thermodynamically unfolded premolten globule protein: The effect of trimethylamine N-oxide on structure and coacervation.
    Dyksterhuis LB; Carter EA; Mithieux SM; Weiss AS
    Arch Biochem Biophys; 2009 Jul; 487(2):79-84. PubMed ID: 19501564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical analysis of the dynamics of prion proliferation.
    Greer ML; Pujo-Menjouet L; Webb GF
    J Theor Biol; 2006 Oct; 242(3):598-606. PubMed ID: 16753184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of recombinant prions with compounds of therapeutical significance.
    Georgieva D; Schwark D; von Bergen M; Redecke L; Genov N; Betzel C
    Biochem Biophys Res Commun; 2006 Jun; 344(2):463-70. PubMed ID: 16630566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autocatalytic conversion of recombinant prion proteins displays a species barrier.
    Baskakov IV
    J Biol Chem; 2004 Feb; 279(9):7671-7. PubMed ID: 14668351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper binding and conformation of the N-terminal octarepeats of the prion protein in the presence of DPC micelles as membrane mimetic.
    Dong SL; Cadamuro SA; Fiorino F; Bertsch U; Moroder L; Renner C
    Biopolymers; 2007; 88(6):840-7. PubMed ID: 17922496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.
    Jaravine VA; Rathgeb-Szabo K; Alexandrescu AT
    Protein Sci; 2000 Feb; 9(2):290-301. PubMed ID: 10716181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stability and aggregation of ovine prion protein associated with classical and atypical scrapie correlates with the ease of unwinding of helix-2.
    Fitzmaurice TJ; Burke DF; Hopkins L; Yang S; Yu S; Sy MS; Thackray AM; Bujdoso R
    Biochem J; 2008 Jan; 409(2):367-75. PubMed ID: 17931166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of biomolecules: Characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein.
    Alonso DO; An C; Daggett V
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1165-78. PubMed ID: 12804272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.