These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16489734)

  • 1. Computer simulation of proton solvation and transport in aqueous and biomolecular systems.
    Voth GA
    Acc Chem Res; 2006 Feb; 39(2):143-50. PubMed ID: 16489734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer simulation model for proton transport in liquid imidazole.
    Chen H; Yan T; Voth GA
    J Phys Chem A; 2009 Apr; 113(16):4507-17. PubMed ID: 19275136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton solvation and transport in aqueous and biomolecular systems: insights from computer simulations.
    Swanson JM; Maupin CM; Chen H; Petersen MK; Xu J; Wu Y; Voth GA
    J Phys Chem B; 2007 May; 111(17):4300-14. PubMed ID: 17429993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane nafion.
    Petersen MK; Wang F; Blake NP; Metiu H; Voth GA
    J Phys Chem B; 2005 Mar; 109(9):3727-30. PubMed ID: 16851417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved multistate empirical valence bond model for aqueous proton solvation and transport.
    Wu Y; Chen H; Wang F; Paesani F; Voth GA
    J Phys Chem B; 2008 Jan; 112(2):467-82. PubMed ID: 17999484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Sep; 110(37):18594-600. PubMed ID: 16970488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realistic simulations of proton transport along the gramicidin channel: demonstrating the importance of solvation effects.
    Braun-Sand S; Burykin A; Chu ZT; Warshel A
    J Phys Chem B; 2005 Jan; 109(1):583-92. PubMed ID: 16851050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biasing the center of charge in molecular dynamics simulations with empirical valence bond models: free energetics of an excess proton in a water droplet.
    Köfinger J; Dellago C
    J Phys Chem B; 2008 Feb; 112(8):2349-56. PubMed ID: 18247589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multistate empirical valence bond description of protonatable amino acids.
    Maupin CM; Wong KF; Soudackov AV; Kim S; Voth GA
    J Phys Chem A; 2006 Jan; 110(2):631-9. PubMed ID: 16405335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models.
    Braun-Sand S; Strajbl M; Warshel A
    Biophys J; 2004 Oct; 87(4):2221-39. PubMed ID: 15454425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrated excess proton at water-hydrophobic interfaces.
    Iuchi S; Chen H; Paesani F; Voth GA
    J Phys Chem B; 2009 Apr; 113(13):4017-30. PubMed ID: 18821788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of hydrated excess protons near phospholipid bilayers.
    Yamashita T; Voth GA
    J Phys Chem B; 2010 Jan; 114(1):592-603. PubMed ID: 19924872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics and energetics of water permeation and proton exclusion in aquaporins.
    de Groot BL; Grubmüller H
    Curr Opin Struct Biol; 2005 Apr; 15(2):176-83. PubMed ID: 15837176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified two-state empirical valence bond model for proton transport in aqueous solutions.
    Mabuchi T; Fukushima A; Tokumasu T
    J Chem Phys; 2015 Jul; 143(1):014501. PubMed ID: 26156482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.
    Kato M; Pisliakov AV; Warshel A
    Proteins; 2006 Sep; 64(4):829-44. PubMed ID: 16779836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The properties of water: insights from quantum simulations.
    Paesani F; Voth GA
    J Phys Chem B; 2009 Apr; 113(17):5702-19. PubMed ID: 19385690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating hydroxide anion interfacial activity by classical and multistate empirical valence bond molecular dynamics simulations.
    Wick CD; Dang LX
    J Phys Chem A; 2009 Jun; 113(22):6356-64. PubMed ID: 19391589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A refined MS-EVB model for proton transport in aqueous environments.
    Park K; Lin W; Paesani F
    J Phys Chem B; 2012 Jan; 116(1):343-52. PubMed ID: 22107267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of proton exclusion in aquaporin channels.
    Ilan B; Tajkhorshid E; Schulten K; Voth GA
    Proteins; 2004 May; 55(2):223-8. PubMed ID: 15048815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.