BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16489749)

  • 1. A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins.
    Zaleta-Rivera K; Xu C; Yu F; Butchko RA; Proctor RH; Hidalgo-Lara ME; Raza A; Dussault PH; Du L
    Biochemistry; 2006 Feb; 45(8):2561-9. PubMed ID: 16489749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion analysis of FUM genes involved in tricarballylic ester formation during fumonisin biosynthesis.
    Butchko RA; Plattner RD; Proctor RH
    J Agric Food Chem; 2006 Dec; 54(25):9398-404. PubMed ID: 17147424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides.
    Yu F; Zhu X; Du L
    FEMS Microbiol Lett; 2005 Jul; 248(2):257-64. PubMed ID: 15990255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis.
    Butchko RA; Plattner RD; Proctor RH
    J Agric Food Chem; 2003 May; 51(10):3000-6. PubMed ID: 12720383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence for the function of FUM13 in 3-ketoreduction of mycotoxin fumonisins in Fusarium verticillioides.
    Yi H; Bojja RS; Fu J; Du L
    J Agric Food Chem; 2005 Jun; 53(13):5456-60. PubMed ID: 15969533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BlmIII and BlmIV nonribosomal peptide synthetase-catalyzed biosynthesis of the bleomycin bithiazole moiety involving both in cis and in trans aminoacylation.
    Du L; Chen M; Zhang Y; Shen B
    Biochemistry; 2003 Aug; 42(32):9731-40. PubMed ID: 12911315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tricarballylic ester formation during biosynthesis of fumonisin mycotoxins in
    Lia Y; Lou L; Cerny RL; Butchko RA; Proctor RH; Shen Y; Du L
    Mycology; 2013 Dec; 4(4):179-186. PubMed ID: 24587959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides.
    Bojja RS; Cerny RL; Proctor RH; Du L
    J Agric Food Chem; 2004 May; 52(10):2855-60. PubMed ID: 15137825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PLP-dependent polyketide chain releasing mechanism in the biosynthesis of mycotoxin fumonisins in Fusarium verticillioides.
    Gerber R; Lou L; Du L
    J Am Chem Soc; 2009 Mar; 131(9):3148-9. PubMed ID: 19215074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production.
    Proctor RH; Busman M; Seo JA; Lee YW; Plattner RD
    Fungal Genet Biol; 2008 Jun; 45(6):1016-26. PubMed ID: 18375156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase.
    Samel SA; Schoenafinger G; Knappe TA; Marahiel MA; Essen LO
    Structure; 2007 Jul; 15(7):781-92. PubMed ID: 17637339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fumonisin-ortho-phthalaldehyde derivative is stabilized at low temperature.
    Williams LD; Meredith FI; Riley RT
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 806(2):311-4. PubMed ID: 15171945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains.
    Keating TA; Marshall CG; Walsh CT; Keating AE
    Nat Struct Biol; 2002 Jul; 9(7):522-6. PubMed ID: 12055621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides.
    Uhlig S; Busman M; Shane DS; Rønning H; Rise F; Proctor R
    J Agric Food Chem; 2012 Oct; 60(41):10293-301. PubMed ID: 22991966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation.
    Proctor RH; Plattner RD; Desjardins AE; Busman M; Butchko RA
    J Agric Food Chem; 2006 Mar; 54(6):2424-30. PubMed ID: 16536629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases.
    Stein DB; Linne U; Marahiel MA
    FEBS J; 2005 Sep; 272(17):4506-20. PubMed ID: 16128819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional complementation of fumonisin biosynthesis in FUM1-disrupted fusarium verticillioides by the AAL-toxin polyketide synthase gene ALT1 from Alternaria alternata f. sp. Lycopersici.
    Zhu X; Vogeler C; Du L
    J Nat Prod; 2008 Jun; 71(6):957-60. PubMed ID: 18435561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization.
    Shaw-Reid CA; Kelleher NL; Losey HC; Gehring AM; Berg C; Walsh CT
    Chem Biol; 1999 Jun; 6(6):385-400. PubMed ID: 10375542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases.
    Simunovic V; Zapp J; Rachid S; Krug D; Meiser P; Müller R
    Chembiochem; 2006 Aug; 7(8):1206-20. PubMed ID: 16835859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimeric structure of the six-domain VibF subunit of vibriobactin synthetase: mutant domain activity regain and ultracentrifugation studies.
    Hillson NJ; Walsh CT
    Biochemistry; 2003 Jan; 42(3):766-75. PubMed ID: 12534289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.