These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16489809)

  • 1. Physical properties of hemoglobin-poly(acrylamide) hydrogel-based oxygen carriers: effect of reaction pH.
    Patton JN; Palmer AF
    Langmuir; 2006 Feb; 22(5):2212-21. PubMed ID: 16489809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photopolymerization of bovine hemoglobin entrapped nanoscale hydrogel particles within liposomal reactors for use as an artificial blood substitute.
    Patton JN; Palmer AF
    Biomacromolecules; 2005; 6(1):414-24. PubMed ID: 15638547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering temperature-sensitive hydrogel nanoparticles entrapping hemoglobin as a novel type of oxygen carrier.
    Patton JN; Palmer AF
    Biomacromolecules; 2005; 6(4):2204-12. PubMed ID: 16004464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High O2 affinity hemoglobin-based oxygen carriers synthesized via polymerization of hemoglobin with ring-opened 2-chloroethyl-beta-D-fructopyranoside and 1-o-octyl-beta-D-glucopyranoside.
    Dimino ML; Palmer AF
    Biotechnol Bioeng; 2007 Jun; 97(3):462-72. PubMed ID: 17115452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier.
    Rameez S; Alosta H; Palmer AF
    Bioconjug Chem; 2008 May; 19(5):1025-32. PubMed ID: 18442283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymersome encapsulated hemoglobin: a novel type of oxygen carrier.
    Arifin DR; Palmer AF
    Biomacromolecules; 2005; 6(4):2172-81. PubMed ID: 16004460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.
    Arifin DR; Palmer AF
    Biotechnol Prog; 2003; 19(6):1798-811. PubMed ID: 14656159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of glutaraldehyde concentration on the physical properties of polymerized hemoglobin-based oxygen carriers.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(4):1225-32. PubMed ID: 15296452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers.
    Chen F; Zhang ZR; Huang Y
    Int J Pharm; 2007 May; 336(1):166-73. PubMed ID: 17145144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles.
    Isojima T; Lattuada M; Vander Sande JB; Hatton TA
    ACS Nano; 2008 Sep; 2(9):1799-806. PubMed ID: 19206418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The quaternary structure of tetrameric hemoglobin regulates the oxygen affinity of polymerized hemoglobin.
    Palmer AF; Sun G; Harris DR
    Biotechnol Prog; 2009; 25(6):1803-9. PubMed ID: 19725116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.
    Zeng X; Wei W; Li X; Zeng J; Wu L
    Bioelectrochemistry; 2007 Nov; 71(2):135-41. PubMed ID: 17398166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.
    Zhao J; Liu CS; Yuan Y; Tao XY; Shan XQ; Sheng Y; Wu F
    Biomaterials; 2007 Mar; 28(7):1414-22. PubMed ID: 17126898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin recognition of molecularly imprinted hydrogels prepared at different pHs.
    Uysal A; Demirel G; Turan E; Caykara T
    Anal Chim Acta; 2008 Sep; 625(1):110-5. PubMed ID: 18721547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation of hemoglobin-loaded nanoparticles and safety evaluation in vitro and in vivo].
    Zhao J; Shan X; Sheng Y; Wu F; Yuan Y; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):584-8. PubMed ID: 18693435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygenation properties of extracellular giant hemoglobin from Oligobrachia mashikoi.
    Aki Y; Nakagawa T; Nagai M; Sasayama Y; Fukumori Y; Imai K
    Biochem Biophys Res Commun; 2007 Aug; 360(3):673-8. PubMed ID: 17617376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin.
    Li L; He X; Chen L; Zhang Y
    Chem Asian J; 2009 Feb; 4(2):286-93. PubMed ID: 19040251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spectroscopic studies on interaction of bovine hemoglobin and realgar nanoparticles].
    Wei J; Shen XC; Liang H; Liang YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):852-5. PubMed ID: 18619314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.