BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1649076)

  • 1. Oxidation of tris to one-carbon compounds in a radical-producing model system, in microsomes, in hepatocytes and in rats.
    Schäcker M; Foth H; Schlüter J; Kahl R
    Free Radic Res Commun; 1991; 11(6):339-47. PubMed ID: 1649076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine.
    Cederbaum AI; Dicker E
    Biochem J; 1983 Jan; 210(1):107-13. PubMed ID: 6303308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of Tris and formaldehyde to CO2 by neutrophil oxidants.
    Zaki S; Steinwachs M; Sharifi S; Gerber E; Kahl R
    Res Commun Mol Pathol Pharmacol; 1996 Jul; 93(1):79-87. PubMed ID: 8865372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of iron, hydrogen peroxide and reactive oxygen species in microsomal oxidation of glycerol to formaldehyde.
    Clejan LA; Cederbaum AI
    Arch Biochem Biophys; 1991 Feb; 285(1):83-9. PubMed ID: 1846735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of glycerol to formaldehyde by microsomes: are glycerol radicals produced in the reaction pathway?
    Rashba-Step J; Step E; Turro NJ; Cederbaum AI
    Biochemistry; 1994 Aug; 33(32):9504-10. PubMed ID: 8068625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsomal oxidant radical production and ethanol oxidation.
    Cederbaum AI; Cohen G
    Methods Enzymol; 1984; 105():516-22. PubMed ID: 6328202
    [No Abstract]   [Full Text] [Related]  

  • 10. Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical generating systems.
    Klein SM; Cohen G; Cederbaum AI
    Biochemistry; 1981 Oct; 20(21):6006-12. PubMed ID: 6272833
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxidation of ethylene glycol to formaldehyde by rat liver microsomes. Role of cytochrome P-450 and reactive oxygen species.
    Kukiełka E; Cederbaum AI
    Drug Metab Dispos; 1991; 19(6):1108-15. PubMed ID: 1687018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrazole and 4-methylpyrazole inhibit oxidation of ethanol and dimethyl sulfoxide by hydroxyl radicals generated from ascorbate, xanthine oxidase, and rat liver microsomes.
    Cederbaum AI; Berl L
    Arch Biochem Biophys; 1982 Jul; 216(2):530-43. PubMed ID: 6287938
    [No Abstract]   [Full Text] [Related]  

  • 14. Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation.
    Beloqui O; Cederbaum AI
    Arch Biochem Biophys; 1985 Oct; 242(1):187-96. PubMed ID: 2996429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radicals are generated by hepatic microsomes during NADPH oxidation: relationship to ethanol metabolism.
    McCay PB; Reinke LA; Rau JM
    Free Radic Res Commun; 1992; 15(6):335-46. PubMed ID: 1314760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation.
    Sugioka K; Nakano H; Nakano M; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1983 Oct; 753(3):411-21. PubMed ID: 6311278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of hydroxyl radicals with tris (hydroxymethyl) aminomethane and Good's buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde.
    Shiraishi H; Kataoka M; Morita Y; Umemoto J
    Free Radic Res Commun; 1993; 19(5):315-21. PubMed ID: 8314112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic hydroperoxide-dependent oxidation of ethanol by microsomes: lack of a role for free hydroxyl radicals.
    Cederbaum AI
    Arch Biochem Biophys; 1983 Nov; 227(1):329-38. PubMed ID: 6314910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and in vitro oxidative biotransformation of dimethylformamide in rat.
    Scailteur V; Lauwerys R
    Chem Biol Interact; 1984 Aug; 50(3):327-37. PubMed ID: 6086163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.